International Council for

ICES Journal of Marine Science, 2025, Vol. 82, Issue 9, fsaf168
https://doi.org/10.1093/icesjms/fsaf168

Received: 19 February 2025; revised: 11 July 2025; accepted: 31 August 2025
Original Article

ICES
CIEM

the Exploration of the Sea

Conseil International pour

I'Exploration de la Mer

Automated fish detection in videos to support commercial
fishing sustainability and innovation in the Alaska walleye
pollock (Gadus chalcogrammus) trawl fishery

Katherine C. Wilson ®1*, Moses Lurbur?3, Noélle Yochum'*

'Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, WA 98133, USA

Zpacific States Marine Fisheries Commission, Under contract to Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA,
Seattle, WA 98133, USA

3Present address: University of Washington, Paul G. Allen School of Computer Science & Engineering , Seattle, WA 98195, USA

“*Present address: Currently at: Trident Seafoods, Fishing Innovation and Sustainability , Seattle, WA 98107, USA

*Corresponding author. Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, WA 98133, USA.
E-mail: Katherine.wilson@noaa.gov

Abstract

Bycatch reduction devices (BRDs) are used in the Alaska walleye pollock (Gadus chalcogrammus) fishery to reduce Pacific salmon (On-
corhynchus spp.) bycatch. Evaluation of BRD effectiveness often requires people to process collected or live-feed video. Deep learning
can be used to detect and classify fish in video to support BRD and other fisheries bycatch work. We fine-tuned and evaluated the
detection model EfficientDet and YOLO11 to find salmon and pollock in videos collected inside a trawl using 11572 salmon and 73394
pollock annotations from 16989 video frames. We evaluated model performance across all data and during high abundances of krill,
varying fish density, camera occlusions, low lighting, and combinations of these using five-fold cross validation. The best performing
model was further evaluated by applying it to videos from three fishing tows not used for model training, using it in a salmon presence
algorithm that was developed to assess whether an efficient semi-automated video review process was feasible, and comparing it
with the performance of a salmon-only detection model. We found that the YOLO models performed better than EfficientDet and on
average detected 90% of salmon and pollock with 72% accuracy using a 50% detection overlap threshold. The YOLO models performed
comparably to annotators for fish detection: the detection performance was higher for pollock and lower for salmon than the variability
measured between annotators. Model performance across trawl and video conditions was more variable for salmon and generally
lowest during high fish densities. The YOLO salmon and pollock model performed better than the salmon-only model when using an
optimal confidence score threshold. When applied to full fishing tows, the YOLO salmon and pollock model incorrectly detected Pacific
herring (Clupea pallasi) as salmon, and correctly predicted 99.3% of salmon presences while reducing the number of video frames
needing to be reviewed by 85%. Overall, the models detected salmon and pollock well inside a pollock trawl, but camera placement,
lighting, and occlusions presented challenges. We provide our annotated dataset, salmon presence algorithm, and recommendations
for optimising video quality in trawls.
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Introduction tations of complex data from experience, which then allows

In commercial fisheries, video collection has increased over
recent decades with the goal of improving fishing operational
awareness, meeting regulatory requirements, and enabling re-
search to improve fishing efficiency and sustainability. This
increase in video collection has primarily been driven by ad-
vancements in camera technologies that have produced a large
selection of relatively low-cost, high quality, and readily avail-
able camera systems that can be deployed in many different
environments. The rise of video collection has increased the
need for resources to monitor and review footage, which can
be a time-consuming, tedious, and expensive task for people.
These challenges can lead to delays in results and innovation.
Fortunately, over the last few decades, there have also been
major advancements in computer vision and deep learning
tools to automate video analysis and reduce the time and cost
of generating large video datasets (Zhang et al. 2021).

Deep learning is a subset of machine learning inspired by
how the human brain works that uses multiple layers of sim-
pler representations to learn and form hierarchical represen-

computers to recognize complicated patterns and make pre-
dictions (Goodfellow et al. 2016). Deep learning models can
be used to automate the detection, classification, and tracking
of subjects in images and videos. Convolutional neural net-
works (CNNs), a class of deep learning models, are widely
used for image processing and have been applied in various
industries to semi-automate or fully automate video and im-
agery analysis tasks. They have been used to detect product de-
fects in manufacturing (Wang et al. 2019) and diseases in med-
ical imaging (Liu et al. 2019), to allow vehicles, equipment,
and robots to navigate autonomously (Grigorescu et al. 2020),
and to reduce the time for reviewing videos for surveillance
(Sreenu & Durai 2019) and commercial fishing electronic
monitoring applications (Tseng and Kuo 2020). Some notable
examples of detection CNNs include EfficientDet (Tan et al.
2020), You Only Look Once (YOLO; Redmond et al. ), and
Faster region-based CNN (R-CNN; Ren et al. 2017)

For fisheries research and other marine applications, there
have been many studies that successfully used CNNs to
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classify or detect marine fish species to assist with imagery
analysis in unconfined open-water conditions (Salman et al.
2016, Qin et al. 2016, Ditria et al. 2020, Ovchinnikova et al.
2021, Alaba et al. 2022). However, the background condi-
tions and number of fish present in the imagery for many of
these studies are less challenging than what can occur in high-
volume commercial trawl fisheries. Deep learning has also
been successfully used at aquaculture farms, which are con-
fined areas with high densities of fish, to monitor fish for dis-
ease, feeding behaviour, and more (Zhao et al. 2021). Zhang
et al. (2020) used CNNs to detect fish in images from an At-
lantic salmon (Salmon salar) aquaculture farm in China with
a 95% detection accuracy. The Tidal project, originally by X,
also used deep learning to track Atlantic salmon for Norwe-
gian aquaculture farms and have had enough success to gar-
ner support for commercializing their aquaculture platform
(https://x.company/projects/tidal/). Despite having high den-
sities of fish, the object detection task for aquaculture farms
do not have to distinguish between different species of fish
which is necessary for bycatch detection in trawls.

Applications of deep-learning for trawl surveys have more
similarities to the conditions observed in commercial trawl
fisheries and have shown promise for automating imagery
analysis. Garcia et al. (2020) and Allken et al. (2021) eval-
uated deep-learning models respectively for fish segmentation
and detection in imagery from Deep Vision (Scantrol, Nor-
way; Rosen et al. 2013, Underwood et al. 2014), a trawl
camera system developed to identify and measure fish during
pelagic trawl surveys. Garcia et al. (2020) used a Mask R-
CNN to segment fish and found that the model could detect
96% of non-overlapping fish and 79% of the overlapping or
occluded fish, but they did not evaluate species identification.
Allken et al. (2021) trained RetinaNet to identify blue whiting
(Micromesistius poutassou), Atlantic herring (Clupea haren-
gus), Atlantic mackerel (Scomber scombrus), and mesopelagic
fishes in images with no krill present and achieved approx-
imately 85% prediction accuracy when requiring a 50% or
greater overlap of predictions and annotations. However, the
amount of blue whiting, and Atlantic herring and mackerel
caught during the survey tows used in this study were low
(947 or less fish) compared to high-volume commercial trawl
fisheries like the pollock fishery whose tows usually contain
one to two orders of magnitude more pollock (i.e. hundreds
of metric tonnes of pollock).

One driver for video collection and the use of deep learn-
ing in commercial fisheries is to develop and evaluate the ef-
ficacy of new, innovative technologies and methods to im-
prove fishing performance or bycatch reduction. As a step to-
wards developing real-time catch information for the demersal
Nephrops (Norway lobsters; Nephrops norvegicus) fishery, a
Mask R-CNN model was used to detect and count Norway
lobsters and three other categories of fish with 75% predic-
tion accuracy and 84% detection rate (Sokolova et al. 2021).
To support the development of commercial trawl systems ca-
pable of in-situ release of bycatch (i.e. active selection), Yi
et al. (2024) developed a Coordinate-Aware Mask R-CNN
(CAM-RCNN) to increase performance generalisation for dif-
ferent sets of imagery (e.g. imagery from different vessels). The
CAM-RCNN had 31% and 57% prediction accuracy respec-
tively for imagery from a new source and imagery from the
source used for training. An Institut Francais de Recherche
pour ’Exploitation de la Mer project (Euronews 2022) and a
Heriot-Watt University and Fisheries Innovation and Sustain-
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ability partnership project (Hollely 2023) are also working to
integrate deep learning into trawl systems to enable automatic
detection, sorting, and retention or release of fish.

Many trawl fisheries could benefit from real-time catch in-
formation or active selection gear, including the commercial
walleye pollock (Gadus chalcogrammus; hereafter referred to
as “pollock”) fishery in Alaska where Pacific salmon (On-
corbynchus spp.; hereafter referred to as “salmon”) bycatch
is a concern. The pollock fishery is the second largest fishery
in the world, with 3.4 million tonnes captured in 2022 (FAO
2024). The Alaskan fishery accounts for approximately 40%
of these landings (Fissel et al. 2016). If the prohibited species
catch limits for Chinook salmon (O. tshawytscha) are reached,
the fishery is closed by sector and season (Ianelli et al. 2019).
BRDs known as “salmon excluders” were developed to re-
duce salmon bycatch in this fishery. The efficacy of salmon
excluders has often been evaluated by reviewing video col-
lected to monitor these devices during fishing (Gauvin and
Paine 2004, Gauvin et al. 2011, Gauvin et al. 2013, Gau-
vin et al. 2015, Gauvin 2016, Lomeli and Wakefield 2019,
Yochum et al. 2021). There are also research efforts to develop
active selection BRDs that use live-stream video and remotely
operated devices within the trawl for this fishery (Rose and
Barbee 2022). Developing CNNs to automate video process-
ing to detect fish for these applications as well as other tools
to support bycatch mitigation could provide great benefits for
these research efforts and the pollock fishing industry.

Despite on-going efforts in other fisheries to develop deep-
learning models for bycatch applications, no similar work has
been done in the Alaska pollock fishery and there are currently
no deep-learning models trained to recognise pollock and
salmon. Additionally, as far as we know, none of the previous
studies have evaluated the performance of fish detection in a
high-volume, pelagic commercial trawl fishery. Therefore, we
selected two open-source object detection models with high
benchmark dataset performance, EfficientDet and YOLO11,
to fine-tune and evaluate for salmon and pollock detection in
the pollock fishery in Alaska. We also developed a detection-
based salmon presence prediction algorithm to evaluate the
feasibility of semi-automated video review for bycatch reduc-
tion efforts. We used videos collected during experimental tri-
als of a salmon excluder (Yochum et al. 2021) to train and
evaluate the detection models to identify salmon and pollock
in the trawl for 10 different trawl and video conditions: krill
presence, varying fish density, camera occlusions, low light-
ing, and combinations of these. A single class salmon-only
model was also trained and evaluated in the same manner as
one of the multi-class models to assess whether a single-class
model could perform better at the task of salmon detection
than a multi-class model. The detections from the multi-class
and single-class models and their respective salmon presence
predictions were also compared for three fishing tows with
known salmon occurrences.

Materials and methods

Video collection and review

We used videos that were collected in the pelagic trawl of
the F/V Pacific Explorer in 2019 and 2020 in Alaska’s East-
ern Bering Sea during the pollock commercial fishing season
(Fig. 1A) to evaluate the performance of a salmon excluder
(Yochum et al. 2021). For both years, video was collected dur-
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Figure 1: Map of Alaska showing (A) the eastern Bering Sea area of data collection in the yellow box with an inset showing the location in the northern
hemisphere marked by a star. Below the map are examples of (B) walleye pollock (Gadus chalcogrammus) and (C) Pacific salmon (Oncorhynchus spp.)

from the catch.

ing multiple research tows in the summer season. The Sexton
Corporation’s (Salem, OR) trawl camera systems, equipped
with a Mobius (Rotterdam, The Netherlands) high-definition
action camera and white LED lighting that illuminated from
both sides of the camera, were placed at the entrance to the
excluder on the inside of the top netting panel facing aft to
view the fish at the entrance of the excluder (Fig. 2). The LED
lighting system was capable of producing a minimum of 2028
lumens when operated at full brightness. Video was collected
at 30 frames per second (fps) at 720p in 2019 and 1080p in
2020. Additionally, for all tows, the vessel’s captain estimated
the total pollock catch for the tow. The catch estimate and in-
formation about when the net was placed in the water, fishing
began and ended, and the net was hauled back were recorded.

Yochum et al. (2021) quantified salmon escapement rates
and the number of salmon that entered the excluder for the
2019 tows by having trained personnel review the videos and
record when salmon were first seen. The 2020 tows were also
reviewed by trained personnel for the same purpose, but the
time that salmon were last seen in the video was also recorded
to support additional analysis.

Annotation

Four people annotated a random selection of the video footage
that had previously been reviewed and had records of when
salmon were detected to train and evaluate models. The
salmon records from four fishing tows from 2019 and three
tows from 2020 were used to randomly select 168 clips of

footage with salmon present and extract frames that corre-
sponded with these times to create videos for annotation. We
used footage from seven tows across both years to capture
variability in fishing conditions. For 2019 data, which only
had records of when salmon were first seen, two second clips
were used due to the absence of information about when
salmon were last seen in the videos. A smaller selection of 16
clips without salmon or any fish were also randomly selected
and included to ensure the dataset was representative of the
most possible scenarios during fishing operations for model
training and evaluation. In total, our dataset consisted of a
184 video clips.

All annotators were trained to use the Computer Vision
Annotation Tool (CVAT; https://www.cvat.ai/) to annotate
the tracks of two classes of objects, salmon and pollock, us-
ing rectangular bounding boxes with fish attributes and tag
frames for different trawl and video conditions. For tracks,
CVAT assigns a unique identifier to each tracked object, in this
case every salmon and pollock in the video, and the identifier
is associated with all the respective bounding boxes. CVAT
can linearly interpolate bounding boxes for tracks based on
provided bounding boxes. Annotators were trained to check
and, if needed, correct the predicted boxes for each frame if
this feature was used.

Subsets of the same data were annotated by the four anno-
tators to assess accuracy and consistency as part of the train-
ing process. The lead annotator reviewed these annotations,
determined when each annotator was ready to annotate other
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Figure 2: Example image of the salmon excluder (Yochum et al. 2021) shown in the last taper section of the net with the camera placement (white box)
and the approximate field of view (dashed triangle) shown. The diameter of the net is approximately 2 m at the beginning of the excluder.

data used in this study, selected a single set of training annota-
tions to include in the final annotation dataset, and reviewed
and modified these and all further annotations to ensure con-
sistency and accuracy.

We used several video tags and annotation attributes to dif-
ferentiate among common trawl and video conditions. These
tags and attributes enabled more granular model training and
evaluation, and they were all clearly defined to provide con-
sistency among annotations. Video tags were used to indicate
six background conditions: (1) the presence of krill (Euphausi-
acea); (2) camera occlusions; (3) low lighting or poor visibility;
and (4-6) low, medium, and high fish density (predominantly
pollock; Fig. 3). Krill tags were used when the presence of krill
impacted an annotator’s ability to distinguish the edges of fish.
Camera occlusions were defined as having 50% or more of
the camera view blocked by an object and tagged accordingly.
Low lighting tags were used if 50% or more of the netting
normally visible in the frame was too dark to see the individ-
ual meshes. The fish density was defined by the proportion of
the netting that was visible over a single video annotation clip:
0% to 25% of the netting visible was high fish density, 26 % to
50% was medium density, and 51% or more of the net visible
was low density. Fish annotations were marked as occluded
when 50% or more of the view of the fish was blocked or
with the poor visibility attribute if a fish’s eyes or fins were
not visible. Additionally, annotation attributes were used to
mark occluded or poorly visible fish annotations.

All salmon and pollock were annotated from the time they
could first be identified as a fish entering the video scene (i.e.
the camera’s field of view) until they were no longer distin-
guishable as fish as they either left the scene or began to vanish
from view as they moved out of the camera’s detection range.
Only a small portion of the fish needed to be visible to allow
people to identify them. Fish tracks that began to vanish out
of the camera’s detection range were ended when the fish first
became indistinguishable from the background, and the fish
was no longer annotated if it became visible in the detection
range again unless it had clearly made a permanent change
in swimming direction and was moving forward in the net. If
fish momentarily became fully occluded by other objects or
left the scene, the original fish track was continued if annota-
tors were confident it was the same fish. If it was ambiguous
for any reason, a new fish track was started.

For each tow, we calculated (1) the total number of frames;
(2) frames without salmon and pollock; and (3) salmon and
pollock tracks and bounding boxes included in the final an-
notation dataset used for model training and evaluation. We
also calculated the total number of frames tagged as the three
different levels of fish densities (low, medium, or high) with
no additional tags, and tagged as these fish densities with any
of the two other camera and background condition tags (krill,

occluded or low light) or the combination (krill and occluded
or low light) for a total of 12 possible conditions.

Annotator performance baseline

The annotator training dataset and Microsoft Common Ob-
ject in Context (COCO) metrics, a standard metric for measur-
ing object detection performance, were used to measure vari-
ability among annotators and provide a baseline from which
to compare the performance of people and automated detec-
tors. An unknown level of variability was expected due to sub-
jective choices about bounding box size and classification, and
the start and end of track annotations. The dataset had 587
to 902 frames of overlap between only four pairs of anno-
tators due to one annotator not having overlapping training
data with two of the other annotators.

We calculated the COCO metrics Average Precision (AP),
mean Average Precision (mAP), Average Recall (AR) and mean
Average Recall (mAR) (COCO Consortium 2015) between
annotator-pairs using the COCO application programming
interface for Python (PyPI 2018). AP and AR are for single
classes, and the mAP and mAR are respectively the mean AP
and AR for all classes for multi-class models.

The AP is a measure of precision (Eq. 1) that conveys the
accuracy of detections. It is a measurement of the number of
correct (true positives; TP) detections relative to the total cor-
rect and incorrect detections (false positives; FP). When ap-
plied to annotators, it is a measure of how many annotations
are the same compared to the total number of annotations of
the annotator being evaluated. COCO’s AP and mAP calcu-
late the average precision across 101 recall values that range
from zero to one and 10 intersection over union (IoU) thresh-
olds that range from 0.5 to 0.95. The IoU threshold is the
percentage of overlap required for a detection or, in this case
the annotation, to be treated as a match with an annotated
ground-truth object.

Recall (Eq. 2) measures the ratio of annotated objects de-
tected by a model compared to the total number of annota-
tions, which includes missed detections (i.e. false negatives;
FN). When applied to annotators, it is a measure of how
many annotations are the same relative to the total number of
ground-truth annotations. AR (Hosang et al. 2015) and mAR
is the recall value averaged over the same IoU thresholds used
for AP and mAP.

.. TP 1)
recision = —————
b TP+ FP
TP
= ——— 2
reca TP+ EN (2)

The COCO metrics use the confidence scores assigned by
detection models and range from 0 to 1 (i.e. 0% to 100%
confidence) to rank all detections and calculate the precision
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Figure 3: Example video frames of when tags would be used to mark (A) the presence of krill, (B) occlusions, (C) low lighting, and to define fish density
as (D) low, (E) medium, or (F) high. A jellyfish is occluding the camera in (B). A single Pacific salmon (Oncorhynchus spp.) is present in (C) and (F), and
two are present in (E). The remaining fish in the images are walleye pollock (Gadus chalcogrammus).

and recall for each detection using the pre-defined IoU thresh-
olds. The AP, mAP, AR, and mAR for all detections is then cal-
culated using these values. These metrics range from zero (i.e.
all detections were incorrect or all annotated objects missed)
to one (i.e. all detections correct or all annotated objects were
detected).

To use the COCO metrics to compare annotators, we cal-
culated the mean and standard deviation of AP, mAP, AR, and
mAR, and the AP, mAP, AR, and mAR for bounding boxes
with 50% or greater overlap (respectively APys, mAPqs,
AR5, mARs5) between pairs of annotators. These metrics
were calculated twice for each pair of annotators: first with
one set of annotations acting as the ground-truth and again
with the other set of annotations acting as the ground-truth.
The mean and standard deviation of the two values were re-
ported as the metric for each pair. The annotations that were
treated as predicted detections were all assigned a confidence
score of one.

Model training and evaluation
Model selection

We evaluated an EfficientDet (Tan et al. 2020) and YOLO11
(Khanam and Hussain 2024) model for salmon and pol-
lock detection. These two models were selected because at
the time of this study they performed better on the COCO
2017 dataset than other open-source and widely used models.
COCO 2017 is an object detection benchmarking dataset that
allows people to compare the performance of different mod-
els by providing a consistent training and evaluation dataset.
The COCO 2017 dataset consists of more than 200 000 la-
belled images with 1.5 million objects that represent 80 ob-
ject classes (Lin et al. 2014, Suppl. Figure 1). For this study,
we selected pre-trained EfficientDet D2 and YOLO11n mod-
els that were trained with and optimized for the COCO 2017
dataset. Optimisation involves tuning configurable hyperpa-
rameters (model parameters that are set before training) to
achieve higher performance. Pre-trained models were chosen
instead of using untrained models to reduce the time and com-
putational resources required for training and possibly pro-

duce a model with greater prediction generalisation. The Ef-
ficientDet model by the Tensor Flow Model Garden (Yu et
al. 2020) and the YOLO11 model by Ultralytics (Glenn et al.
2023) were used.

Out of eight available EfficientDet models designed and
pre-trained for different image sizes, EfficientDet D2 (here-
after referred to as EfficientDet) for 768 x 768 pixel images
was chosen because its image size was the closest match to
our lower resolution videos (720p, 1280 x 720 pixels). We
chose the smallest and most computationally efficient of five
available YOLO11 models, YOLO11n (hereafter referred to
as YOLO11), since all were pre-trained for 640x640 pixel
images.

Cross-validation dataset

We used five-fold cross-validation to train and evaluate the
object detection models as multi-class models for salmon and
pollock classes (hereafter referred to as the multi-class model).
For this cross-validation, our 184 annotated video clips were
randomly assigned to one of five data subsets and, when nec-
essary, clips were re-assigned to balance the number of clips
of the different trawl and video conditions across subsets. Five
different models were trained and evaluated with all of these
data subsets. For example, one model was trained with sub-
sets 1, 2, 3, and 4 and evaluated on subset 5 while another
model was trained with subsets 2, 3, 4, and 5 and evaluated
on subset 1.

Model fine-tuning

We fine-tuned the pre-trained EfficientDet and YOLO11 mod-
els with our annotated dataset to detect salmon and pollock
respectively using TensorFlow 2 and the Ultralytics package
and most of the default hyperparameters that were provided
for these models. We used default hyperparameters to keep
the fine-tuning process simple and evaluate the performance
achievable with hyperparameters optimized for a large and
diverse image dataset. The batch size was reduced to four
to accommodate the GPU and memory limitations of our
computing resources, and each model’s default optimizer’s
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Table 1. EfficientDet D2 and YOLO11n hyperparameters for training, evaluation, and prediction.

Type Hyperparameter EfficientDet D2 YOLO11n

Training Optimizer momentum auto (SGD + Adam)
Initial cosine learning rate 0.001* 0.001*
Final cosine learning rate NA 1E-05
Momentum 0.9 0.937
Weight decay NA SE-4
Warm-up epochs 0.046* 0.05*
‘Warm-up momentum NA 0.9%
Warm-up learning rate SE-4* SE-4*

Box loss
Classification loss

weighted smooth L1
weighted sigmoid focal (y=1.5, =0.5)
1

complete IoU
binary cross-entropy

Box loss gain 7.5
Classification loss gain 1 0.5
Distribution focal loss gain NA 1.5
Image size 768 x 768 768 x 768*
Batch size 4* 4*
Data Augmentation None None
Evaluation and prediction NMS IoU 0.5 0.5*
NMS score threshold 1E-8 1E-8*
Max detections per image 100 100
Image size 768 x 768 768 x 768*

The first column indicates whether the hyperparameter is for training or evaluation and prediction. NMS refers to non-maximum suppression, SGD is stochastic
gradient descent, and NA is used for model hyperparameters that were not used or not user-defined. Settings changed from the pre-trained model’s default

values are marked by a “x.”.
Insert Source Here

learning rates were adjusted to account for the lower batch
size and to use similar settings (Table 1). Optimizers are
used to minimize the loss functions during training. Effi-
cientDet uses a momentum optimizer (Polyak 1964) and
YOLO11 uses Ultralytic’s auto optimizer (combination of
AdamW (Loshchilov and Hunter 2017) and Stochastic Gradi-
ent Descent (Amari 1993) optimizers). YOLO’s post process-
ing non-maximum suppression (NMS) settings, which helps
to eliminate duplicate detections, and image size were set
to defaults used for EfficientDet. For all other EfficientDet
and YOLO hyperparameters, the default values of the pre-
trained models were used, including the maximum detec-
tions default of a 100 detections per image, which is higher
than the number of objects typically present in our video
frames.

Using a small subset of annotated data, we explored data
augmentation methods with EfficientDet, and determined they
did not provide performance gains. Therefore, data augmen-
tation was not used for fine-tuning EfficientDet or YOLO11.
The data augmentation methods tested included random im-
age colour distortion, horizontal flips, scaling and cropping,
and brightness and contrast adjustments.

The EfficientDet models were trained for 15.4 epochs and
the YOLO11 models were trained between 186 and 314
epochs. The number of epochs for the EfficientDet models was
determined by monitoring model loss values while training
and finding the approximate location where the loss had de-
creased to its lowest value prior to steadily increasing. The
training epoch at this loss minimum should optimize per-
formance while limiting overfitting of the data. Training for
the YOLO11 models was automatically stopped after 100
epochs if the model validation metrics did not improve. We
used the best saved models for evaluation. All training and
training evaluation were performed using a Google Cloud
virtual instance with four NVIDIA T4 graphical processing
units.

Model performance

After training was complete, AP, mAP, AR, and mAR, and
APy 5, mAPy 5, ARgs, and mARg s for salmon and pollock
were calculated for each of the multi-class model’s respec-
tive evaluation datasets to evaluate overall performance. The
general toolbox for identifying object detection errors (TIDE;
Boyla et al. 2020) was used to categorize and estimate the
percentage of errors that were false positives or negatives and
which were caused by classification or localization errors and
background or missed detections. False positive detections
were further evaluated by applying the models to the video
frames where no fish were present using five confidence score
thresholds (0.5 to 0.9).

The APy s and AR5 for each class of the best performing
multi-class model was calculated across all confidence score
thresholds to determine the threshold that produced equal
APy s and ARg s (hereafter referred to as the optimal confi-
dence score threshold) prioritizing these two metrics equally,
and compared with the performance variability of annotators.
The model with the best trade-off between lower false positive
detections and higher APy s and AR 5 was selected as the best
performing multi-class detection model.

Performance variability was evaluated for all multi-class
models using the optimal confidence thresholds for APy 5 and
ARy s for the best performing model. The APy s and ARy 5 for
salmon and pollock were calculated for each of the trawl and
camera conditions present in each model’s respective evalua-
tion datasets.

Salmon-only model

A single-class salmon-only model (hereafter referred to as the
single-class model) was also fine-tuned and the model’s overall
performance, optimal confidence threshold, and performance
variability was evaluated in the same manner as the multi-class
models. The single-class model was trained and evaluated with
only salmon annotations and all pollock annotations omitted
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using the data subset from the five-fold cross validation that
produced the best overall model performance. The model was
trained for 250 epochs with the same hyperparameters as the
selected best performing multi-class model.

Model validation on fishing tows

Fishing tows

Video from three tows from those collected in 2019 (tows 16,
18, and 20) were selected to further evaluate the detection per-
formance for salmon. The three tows had varying catch rates
for pollock and salmon and were not used for model training
or evaluation. The same NMS hyperparameters used to eval-
uate the models were used to run the models for predictions
on full length fishing tows (Table 1).

The salmon previously indicated in the Yochum et al.
(2021) analysis were reviewed for these three tows and the
start and end frames of each individual salmon presence was
recorded to create a dataset that included frame information
for all salmon. Using an open-source video review software,
DJV, a reviewer skipped to the video times where salmon
were indicated and recorded the first and last frame that each
salmon was identified in the video. Salmon were considered
present when the reviewer could distinguish the fish as salmon,
including when fish were partially occluded. Salmon were con-
sidered not present when they could no longer be recognised
because they had become too small or had faded into the
background of the video. To ensure the accuracy of individ-
ual salmon presence frame data, another person reviewed and
recorded the start and end frames of all previously indicated
salmon for a random 10% of the videos from all three tows as
well as all salmon indicated in the original review sheet that
our initial reviewer could not find. Any discrepancies beyond
minor differences in start and end frames were discussed and
resolved.

Fish detections

The best performing multi-class model and the single-class
model were applied to the videos from the three full length
fishing tows. All detections with a confidence score equal to
or greater than the optimal confidence score threshold for each
class were retained to evaluate detection performance for pol-
lock and salmon. The average number of salmon and pollock
detections per second was calculated by applying a 30-frame
moving average to the total detections per frame of each. The
total number of salmon present for each frame of the tow
videos was determined from the individual salmon presence
frame data. These totals were plotted with the average detec-
tions per second for salmon and the total salmon detections
per frame to understand the performance of the models and
any possible issues with false positive and negative detections.
The detections for a small subset of frames from these tows
were also plotted to visualize and understand both types of
detection errors.

Salmon presence

We established a detection-based salmon presence algorithm
to predict general salmon presence and to assess the feasibility
of using detections to indicate general salmon presence in sup-
port of semi-automated video review. Multiple variables were
included to allow us to require consecutive frames of salmon
detections or multiple salmon detections per frame to possibly
improve salmon presence prediction when salmon false posi-

tives or missed detections occurred. The code and models used
for salmon presence prediction are publicity available on our
Github repository.

The salmon presence algorithm, S, was calculated using
three thresholds: the minimum confidence of salmon de-
tections C, the minimum number of salmon detections per
frame M, and the minimum number of consecutive frames
containing salmon detections N. Salmon presence, S, was
predicted as true for a given set of consecutive frames of
length N if for every frame there are at least M salmon
detections with a confidence score greater than or equal
to C.

Salmon presence, S, for a given set of consecutive frames F,
where k is the set or prediction occurrence number, is deter-
mined by the following equations:

{dij € Dild;; = C} (3)
{fiirrita..itn € BlIDi| = M,V f;} (4)
_J1L IERI=N

Where D; is the set of all salmon detections dj; with a con-
fidence score greater than or equal to C for frame f; where i
and j are respectively the frame number and detection number
(Eq. 3). A consecutive set of frames was included in the set F
if all frames have salmon detections greater than or equal to
M (Eq. 4). For each set in F, S is true if the size of the set is
greater than or equal to N (Eq. 5).

To determine the best range of values for thresholds C, M,
and N, we performed parameter optimisation using the LIPO
global optimization algorithm (Malherbe and Vayatis 2017).
A random selection of 20% of the videos from each tow were
used to optimise parameters. Two metrics were used to choose
the preferred values for these parameters: proportion of in-
cluded frames and presence recall.

The proportion of included frames, I, was defined as the
fraction of total frames where salmon presence was predicted
(Eq. 6) and is indicative of the proportion of video that a per-
son would need to review. This metric gives an approximation
of the potential time savings from a semi-automated review
process.

k
I 2_s(E)—1 |l
total frames

(6)

Presence recall, P, was defined as the proportion of gen-
eral salmon presence occurrences that had at least one salmon
presence prediction. We chose this definition of successful
presence detection because the prediction algorithm would
correctly indicate the video location of salmon for a person
conducting a semi-automated review process. If T'is a set con-
taining the general ground-truths of salmon occurrences (a
consecutive set of frames where salmon is present) where m
indicates the set or occurrence, then we calculated presence
recall by counting the number of sets in T that intersect with
any set in F (i.e. they share at least one frame) and the inter-
secting F set has S(F) equal to one. We then divided the total
correctly predicted salmon presence occurrences by the total
true number of occurrences (Eq. 7).

m
ZTmn FasE=1 1

P =
7]

(7)
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Two other metrics, frame recall and precision, were used
with I and P to evaluate the optimal salmon presence algo-
rithm. Frame recall was calculated as the number of frames
where salmon presence was correctly predicted (true posi-
tives), divided by the total number of frames where salmon
presence was true (Eq. 2). Frame precision was calculated as
the number of frames where salmon presence was correctly
predicted, divided by the total number of frames where salmon
presence was predicted (Eq. 1).

The optimal salmon presence algorithm determined by the
parameter optimisation with a confidence threshold that was
selected empirically to maximize presence recall while still
eliminating a high proportion of frames for review was run
on all three full-length tow videos and evaluated using these
four metrics: I, P, frame recall, and frame precision. General
salmon presence, rather than individual salmon presence, was
determined from the individual salmon presence frame data
and used to calculate these metrics.

Results

Annotation dataset

The annotated dataset included 16 989 frames with 219
salmon and 3091 pollock tracks that consisted of 11575
salmon and 73394 pollock bounding box annotations, re-
spectively (Table 2, Fig. 4). There were 1059 frames where
salmon and pollock were not present and the remaining
15930 frames included salmon and pollock annotations for
nine of 12 background conditions. Approximately 85.1%,
7.9%, and 0.7% of the dataset was respectively classified
as low, medium, and high fish densities. High densities of
krill were present in 14.2% of the frames, and 5.8% had
the camera occluded or had low illumination. Three other
possible background conditions were not present in the ran-
domly selected data: the presence of high densities of krill dur-
ing high fish density and the presence of both high densities
of krill and camera occlusions during medium and high fish
densities.

For the seven tows that annotation video clips were selected
from, there were a total of 690 chum salmon (O. keta) and
4 Chinook salmon (O. tshawytscha) caught and tow speeds
ranged from 1.6 to 2.2 m/s. The annotated data included 16%
of the salmon present in the four tows used from 2019 and
44% of the salmon present in the three tows from 2020. A
higher percentage of salmon in the 2020 tows were used for
annotation because there were fewer salmon present in these
tows.

Annotator performance baseline

The maximum variability between salmon and pollock anno-
tations completed by different annotators was approximately
30% and pollock accounted for most of this. The average
mAPy 5 was 0.7 & 0.08, indicating that between annotators an
average of 70% of the annotated salmon and pollock matched
with 50% or greater overlap. The average mAP 5 ranged from
0.57 to 0.79, while the average mAR s was 0.81 & 0.07 and
ranged from 0.74 to 0.87. Higher AP and AR showed there
was greater consistency among salmon annotations (approx-
imately 85-90% agreement) compared to the pollock anno-
tations (approximately 60%—77% agreement) (Table 3). An-
notator variability was greatest for pollock on the bottom

Table 2. Summary of the annotated dataset by year and tow from which the videos were collected, including the total number of frames and the number of bounding boxes and tracks for salmon and pollock

included from each tow. This is followed by the number of frames by fish density (No Fish, and Fish low, med, and high) with background conditions of no krill (Clear), high density of krill present (Krill), camera

occlusions or low light (Occluded or low light), and high density of krill and camera occlusions or low light (Krill & Occluded).

Fish high

Fish med

Fish low
Occluded or

Pollock

Salmon

Occluded or
low light

Clear

Occluded or
low light

Clear  Krill

Krill &
Occluded

low light

Tow #  Frames  Tracks Boxes Tracks Boxes No Fish Clear Krill

Year

29

0
2048

2124
1294
474
4114
624
361
2369
11360

307
420

4075
10154
12989
39911

116
371
751

1532
1802
686
4846
503
329

39
42
22
92

2460

15
17
21

2019

50

4080

34 86

16
94

374
754
61

49

17
0
43

1050
5664

56

378

268

1670

113

22

2875
784
2606
73394

728
393
2623

1

2020

11

21

13
57
3091

0
2316

251

1874
11572

13
219

6

110 334 86

56

1189

738

1059

16998

Total

Wilson et al.

Gz0z Jaquisldas Gz uo Jasn uoibuiysepn 1o Ausisaiun Aq 90/2928/89 L1ES)/6/Z8/31911e/swlseol/woo dno olwapede//:sdiy Woll papeojumo(]



Commercial fishing sustainability and innovation in the Alaska walleye pollock 9

(A)100 B = (B)
&
80 2019 tows
m 5
H 17
et m 2
2 60 22
©
3 2020 tows
o 4 W I B 2
®
£ n I
15
< 20 I
L

& X o ¥
RN
L o &8 o Krill

Occluded
or low light

Salmon Pollock

| ]
[ |
it 5
B 6 m
|| : [

& Fish density none low low low low med med med high high

X X X

X X X X

Total frames 1059 11,360 2316 738 50 1189 56 110 34 86

Figure 4: The percentage of annotations from each tow. (A) The percentage of total frames, bounding boxes and tracks of salmon and pollock. (B) The
percentage of frames for four levels of fish density (none, low, med, high) and different background conditions present in the annotations are shown.
The table below the bar plot shows the fish density in the top row and the total number of frames for each condition or combination of conditions in the
bottom row. If krill (Krill) or either camera occlusions or low light (Occluded or low light) were present, it is indicated by an “X" respectively in the second
and third rows of the table. 2019 tows are shown in shades of blue and 2020 tows in shades of red with white or black dots.

and sides of the net and entering and leaving the camera
scene.

Model training and evaluation
Cross-fold validation dataset

Separating annotations by video clips led to variability in the
number of frames, annotations, and tracks included in each
of the five data subsets used for cross-fold model evaluation
and training. Each data subset included a range of 16% to
24% of the annotated frames (2670 to 4133 frames), 17%
to 26% of the salmon annotations (1998 to 3001 frames),
19% to 21% of the salmon tracks (42 to 45 tracks), 17% to
23% of the pollock annotations (12471 to 16 524 frames),
and 16% to 28% of the pollock tracks (497 to 871 tracks)
(Table 4).

Model performance

YOLO11 outperformed EfficientDet for all metrics we evalu-
ated (Table 5). YOLO11 achieved a mAP( s of 0.72 4 0.083
and mARgs of 0.90 £ 0.014 for salmon and pollock de-
tection; whereas, EfficientDet achieved only a mAPys of
0.54 + 0.068 and mAR(;s of 0.83 + 0.059. The mean
APy s and AR5 for models was higher for pollock for both
YOLO11 and EfficientDet than for salmon. The multi-class
model that was trained and evaluated using data subset §
had much lower salmon APy s than the other four models for
both YOLO11 (approximately 30% lower) and EfficientDet
(approximately 11% lower). For YOLO11, the APy s of the
other four multi-class models and the single-class model were
similar and ranged from 0.7 to 0.8. The single-class model’s
salmon ARy s was higher (0.983) than all the YOLO11 multi-
class model’s AR s (max 0.88).

For the multi-class models’, false positives were associated
with an average of 18% of the YOLO11 and 29% of the Ef-
ficientDet D2 performance error, while respectively approxi-
mately 11% and 12% of these were due to other objects in

the scene or the background being detected as either salmon
or pollock. False negatives contributed to an average of 7.5%
of the model error for the YOLO11 multi-class models com-
pared to 10% for the EfficientDet models. These false nega-
tives accounted for an average of 0.8% of annotations missed
by YOLO11 and 5% missed by EfficientDet. For the single-
class model, false positives accounted for a similar percentage
of error as the multi-class model’s averages (approximately
19% total and 11% background). However, the single-class
model had a lower percentage of false negatives (1.3%) and
missed detections (0.3%).

Low confidence score thresholds led to low numbers of
false positive salmon and pollock detections for the multi-class
models and no false positive salmon detections for the single-
class model when neither salmon or pollock were present.
The number of false positive fish detections for the 1059
frames with no fish was variable for the five multi-class mod-
els, ranging from 2 to 66 detections (approximately 0.1-6.2%
of frames) when a confidence score threshold of 0.5 was used
to 0 detections for a threshold of 0.9 (Figure 5A). The 66
false positive fish detections for the 0.5 confidence thresh-
old was an anomaly produced by high pollock false positives
for one of the trained models. The model with the second
highest false positive detections for the 0.5 confidence thresh-
old had only 18 false detections (approximately 1.7% of
frames).

When using the optimal confidence score thresholds, the
best performing multi-class model precision and recall for pol-
lock detection was higher than the performance variability
measured for our annotators. However, the detection perfor-
mance for salmon precision and recall for the multi-class and
single-class models was lower than our annotator variability
(Fig. 5B). The salmon precision for the multi-class and single-
class models were similar across confidence score thresholds,
but for confidence scores greater than 5e-3 the multi-class
model had higher salmon recall than the single-class model.
The confidence score that optimized APy s and ARy s for pol-
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(not

Pollock
0.73 + 0.06
0.85 +0.05
0.74 £ 0.14
0.73 +£0.16

AR5

Salmon
na
0.91 + 0.04
0.89 +0.03
0.91 + 0.01

Pollock
0.22 £+ 0.01
0.32 + 0.04
0.26 £+ 0.07
0.25+0.11

AP 5.0.95

Salmon
na
0.47 +0.06
0.46 + 0.02
0.45 +0.02

Pollock
0.57 +0.02
0.75 + 0.04
0.58 £0.12
0.55+0.17

APy s

Salmon
na
0.86 + 0.04
0.83 +0.02
0.87 £ 0.02

mARg s
0.74 £ 0.07
0.87 + 0.04
0.81 £ 0.08
0.82 + 0.07

mAP s5.0.95
0.22 £ 0.01
0.38 & 0.04
0.34 +0.01
0.34 +0.04

mAP s
0.57 +0.02
0.79 + 0.04
0.69 + 0.04
0.69 +0.07

Total frames
587
742
902
742

union of 0.5 or greater follow. The comparison of annotator 2 with annotators 3 and 4 was not possible because there were no overlapping annotations between these annotators, indicated by “NA”

thresholds greater than 0.5 up to 0.95. COCO’s mAPy s mean Average Recall (mAR(s), Average Precision (APg5), and Average Recall (ARgs) for each class for annotator annotations with an intersection over
applicable).

Table 3. COCO metrics for annotator analysis, including mean Average Precision (mAPg 5:0.95) for both classes (salmon and pollock) and Average Precision (APgs:0.95) for each class for ten intersection of union

Annotator pair

Wilson et al.

Table 4. The number of frames, annotations, and clips in the five data
subsets used for five-fold cross validation model training and evaluation.

Data subset: 1 2 3 4 5
Frames 2994 3547 2670 4133 3654
Annotations 16015 18628 16221 14594 19525
Salmon annotations 2019 2434 1998 2123 3001
Pollock annotations 13996 16194 14223 12471 16524
Salmon tracks 42 44 43 45 45
Pollock tracks 510 606 607 497 871
No fish clips 6 5 6 6 6
Fish low clips 32 32 33 32 32
Fish med clips 4 4 5 4 4
Fish high clips 0 0 1 0 1
Occlusion or low light clips 7 6 6 6 6
High density krill clips 4 5 5 4 4

lock and salmon for the multi-class model was approximately
0.1 and 0.23 respectively, and it was 0.06 for the single-class
salmon-only model (Fig. 5B).

The evaluation of detection performance across the nine
different trawl and video conditions showed there was greater
variability among model performance for salmon, that detec-
tion performance was generally lower during high fish density,
and that salmon detection was better than pollock detection
when high densities of fish or krill were present (Fig. 6). When
using the optimal confidence score thresholds, the median
APy 5 ranged from 0.29 to 0.87 and the median AR 5 ranged
from 0.4 to 0.88 for salmon and pollock across conditions.
The median APy s and AR s were highest during medium fish
density with high abundnace of krill present and were low-
est during high fish density conditions and when a high abun-
dance of krill and camera occlusions or low light were present
at the same time. Salmon median APy ;s and AR s were lower
than pollock excpet when high densities of fish or krill were
present.

Model validation on fishing tows

Fishing tows

The tows selected for model validation (2019 tows 16, 18,
and 20) included 52 videos and had a range of salmon oc-
currences and estimated pollock catch. The duration of video
collected for each tow was 2.5, 2.1, and 2.1 hours, the salmon
occurrence rates were 63.2, 51.4, and 160.5 individuals per
hour, and the estimated pollock catch rates were 6, 1.4, and
27.8 metric tonnes per hour respectively for tows 16, 18, and
20 (Yochum et al. 2021). The total number of salmon pres-
ence occurrences for all tows was 664 (tow 16 = 168, tow
18 = 134, and tow 20 = 362) and the number of recorded
general salmon occurrences was 655 (tow 16 = 165, tow
18 =131, and tow 20 = 359) due to instances when the same
salmon came in and out of frame several times.

The rate of agreement between the two people who de-
termined the individual salmon presence was 84.5% for the
random 10% sample of tow videos. During the review of all
salmon that had been previously recorded for these tows, we
identified instances where previously recorded salmon could
not be identified in videos (n = 6), instances where salmon
were present in the videos but not indicated in the review sheet
(n = 7), as well as two salmon that were missed by the first
reviewer and caught during the second review. These discrep-
ancies were corrected for in our individual salmon presence
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Figure 5: YOLO11n model performance for different confidence score thresholds when no fish are present and fish are present. (A) Boxplots of the
multi-class models’ number of false positive (FP) salmon (light blue) and pollock (grey) detections for 1 059 frames with no fish present for five
confidence thresholds ranging from 0.5 to 0.9. The red line in the middle of each box, the bottom and top of the boxes, the whiskers, and the open
circles show the values of the median, the first and third quartiles, the minimum and maximum, and outliers, respectively. The star and diamond (dark
blue) to the right of each box respectively show the values of the best multi-class model and the single-class salmon-only model. (B) COCO's Average
Precision (APg s, solid line) and Average Recall (AR s, dashed line) for an intersection over union threshold of 0.5 for the best multi-class model’'s salmon
(light blue) and pollock (grey) detections and the single-class model’s salmon (dark blue) detections are shown for all confidence score thresholds. The
shaded blue and grey areas show our annotators’ performance range for salmon and pollock respectively. The lower bound of the shaded areas is the
mean APg 5, and the upper bound is the mean ARg s achieved between annotators. The stars show the confidence score that optimises the models

APO_5 and AR0_5A

as multi-class models to detect salmon and pollock. Each
model’s overall performance was evaluated with COCO and
TIDE metrics, and the performance variability across ten dif-
ferent trawl and video conditions was examined. A single-class
salmon-only model was also trained and evaluated with the
same dataset used for the best performing multi-class model.
The best performing multi-class and the single-class models
were compared with the detection variability we measured for
our annotators and further tested on full fishing tows to as-
sess performance on a greater amount of data and to evaluate
the feasibility of streamlining video review using a detection-
based salmon presence prediction algorithm that we devel-
oped.

Our analysis showed that YOLO11n performed better than
EfficientDet D2 at detecting salmon and pollock in trawl
videos and within the range of the variability we measured be-
tween annotators when considering the performance of both
classes together. At optimal confidence score thresholds, the
multi-class performed better at salmon detection than the
single-class model. The detection performance across mod-
els was more variable for salmon than pollock across dif-
ferent trawl and video conditions and it was generally low-
est during high fish densities. For full fishing tows, the multi-
class model detected more salmon and salmon presences than
the single-class model. The YOLO11n multi-class detection
model’s ability to predict salmon presence would support a
semi-automated video review process that would be more ef-
ficient than a fully manual review.

Annotation dataset

We used multiple tows from two different years to create a
diverse annotation dataset, but it had weaknesses such as few
examples of Chinook salmon, young and smaller salmon, high

fish density conditions, and no examples of herring or differ-
ent trawls. The video used to create the annotation dataset
was collected from a single vessel during the summer pol-
lock fishing season when the salmon bycatch is predomi-
nately chum salmon (O. keta) as opposed to the winter sea-
son when Chinook salmon (O. tshawytscha) are more preva-
lent including younger, smaller adults (Witherell et al. 2002,
Tucker et al. 2011, Stram and Ianelli 2015). More exam-
ples of Chinook salmon are needed to know how well the
models can detect this species. The full fishing tow detec-
tion results showed that herring were incorrectly detected as
salmon and this may have been reduced if video clips with
herring had been included in the annotation dataset. A lack
of data from multiple vessels could also cause the devel-
oped models to not generalise well to video collected from
other vessels, and we were unable to evaluate this with our
dataset.

The annotation dataset was also imbalanced and included
fewer salmon annotations than pollock annotations which
likely contributed to the lower detection performance for
salmon than pollock. The dataset also had fewer frames with
medium and high fish density compared with low fish density
and low numbers of frames with medium or high fish densi-
ties with camera occlusions, low light, or high krill abundance
present. This led to the exclusion of different conditiond in
some of the cross-validation data subsets. For example, our
dataset only included two video clips with high fish density
and, therefore, only two of the five cross-validation subsets
had examples of high fish density. This also led to some of the
different trawl and video conditions having low frame sample
sizes, models with evaluation datasets that did not include any
examples of some conditions, and high model performance
variability across these conditions. Furthermore, the data sub-
set that was used for training and evaluating the best perform-
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Figure 6: Boxplots of COCO's (A) average precision (APg5) and (B) average recall (ARg ) for intersection over union of 0.5 or greater for the five
YOLO11n multi-class models. The APq 5 and ARg s values for salmon (blue) and pollock (grey) are shown for nine different background conditions
indicated in the table along the x-axis. Fish density was either low, medium (med), or high, and is shown along the top row of the table. A “X" is used to
mark if other conditions were present in these data in the lower rows. See Figure 5 for boxplot and marker descriptions.

ing multi-class model was missing examples of low fish den-
sity with high abundance of krill and camera occlusions or
low light present, medium fish density with high abundance
of krill present, and high fish density. This may have led to
the model’s higher performance metrics, and it is possible that
one of the other models may have greater generalisation and
perform better on the full fishing tows.

The addition of data that contains herring and other con-
ditions that had low representation in our dataset (e.g. pres-
ence of krill or high fish densities) would likely increase model
performance since more data often leads to increased model
performance (Goodfellow et al. 2016). Balancing the number
of annotated video clips across cross-validation data subset
would improve the cross-validation evaluation and is achiev-
able. However, a fully balanced dataset for these videos is
likely not achievable due to higher occurrences of low fish
density compared to medium and high fish density and pol-
lock compared to salmon.

Annotator performance baseline

The majority of annotator variability was due to differences
among pollock annotations. Given the high number of pol-
lock present in these videos this was not surprising. The cam-
era setup and illumination used to collect the videos produced
a mostly aft-facing, tunnel view that led to fish fading into the

background and provided limited visibility of the bottom of
the net. Both of these situations created challenges for and
discrepancies among annotation. Fish, especially smaller fish
like some of the pollock, were hard to distinguish on the bot-
tom and deciding when to end a fish track as it faded into the
background was more subjective. When high densities of krill
were present it was also hard to distinguish fish and lead to
discrepancies in the annotations. Often the salmon present in
our videos were larger than the pollock and, therefore, were
easier to distinguish on the bottom and when high densities of
krill were present.

Model training and evaluation

YOLOT11 performed better on this dataset than EfficientDet,
and both models did better at predicting pollock than salmon.
Furthermore, YOLO11’s fish detection for these trawl videos
was comparable to the variability measured for people’s abil-
ity to detect fish. However, the performance for pollock de-
tection was higher and the performance for salmon detection
was lower than the variability measured for our annotators.
The largest contributor to the false positive error for YOLO11
was the detection of other objects as salmon and pollock (i.e.
background detections), and fewer errors were due to salmon
being classified as pollock or vice versa. The opposite was true
for EfficientDet. The lower performance for salmon was likely
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Figure 7: Fish detections from the multi-class and single-class YOLO11n models for 2019 tow 20 compared with the salmon detected by people for
these tows. (A) The multi-class model’s mean number of salmon (blue) and pollock (grey) detections per second. The times that salmon were detected
by people (red) are overlaid and shown for the multi-class model’s and the single-class model’s salmon detections per frame in (B) and (C), respectively.
The light grey background in the plots shows times that herring were common and the light red background shows when high abundances of krill and
herring were present. In A-C partially transparent markers are used to plot the mean fish detections per second and salmon detections per frame so
they appear darker when more frames in a time period have detections and lighter when there are fewer detections.

multi-class model
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Figure 8: Examples of fish detections with confidence scores greater or equal to 0.5 from three frames for the multi-class (A-C, top images) and
single-class model (D-F, bottom images). Salmon (blue boxes) and pollock (grey boxes) detections are shown with the confidence score as a percentage
at the top of the boxes. Red dashed boxes show incorrect or missed detections of salmon.

Table 6. The multi-class (salmon and pollock) and single-class (salmon only) model salmon presence algorithm results. The 2019 fishing tow (Tow),
presence recall (P), frame precision and recall, proportion of included frames (I), percentage of frames with salmon present from reviewer records (% of
frames presence known), the number of salmon occurrences that were correctly predicted (Correct predicted occurrences), and the number of salmon
occurrences that were missed (Missed occurrences) are shown.

Frame % of frames Correct predicted Missed oc-

Model Tow P Frame precision recall I presence known occurrences currences
Salmon & pollock 16 100% 17% 87% 15% 3% 168 0
18 99% 27% 78% 8% 3% 132 2
20 99% 24% 73% 22% 7% 359 3
Salmon only 16 98% 25% 77% 9% 3% 165 3
18 97% 54% 66% 3% 3% 129 N

20 93% 40% 57% 10% 7% 345 17
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Figure 9: Predicted and actual salmon presence for a single video from (A) tow 16 and (B) tow 20 using the multi-class pollock and salmon detection
model. False positive predictions are shown in red and the actual presence and correct predictions are in blue. All occurrences of salmon presence were
correctly predicted in A. The first occurrence of salmon presence in B was missed and was the only missed occurrence in the plot.
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Figure 10: Metrics for evaluating the salmon presence algorithm when using the multi-class pollock and salmon detection model plotted across the
range of object detection confidence thresholds. In (A) presence recall (P, red, Eqg. 7) and proportion of included frames (/, blue, Eqg. 6) and in (B) frame
recall (red, Eq. 2) and precision (blue, Eq. 1) for salmon presence prediction are shown. The black dashed line shows the confidence threshold used for

presence prediction.

due to fewer annotated salmon available for training com-
pared to pollock.

One of the five multi-class models for both YOLO11 and
EfficientDet had relatively low average precision compared
to the other models for each detector, which was due to
the dataset used for evaluating these models. The evalua-
tion data subset used had one relatively long clip (1171
frames, 33% of the data subset) of a single salmon near
the end of a tow and another short clip with 10 salmon
during high fish density. Errors in salmon detection for the
high number of salmon annotations in these clips likely

led to the lower performance metrics for salmon for these
models.

The evaluation of model performance across different con-
fidence score thresholds highlighted important aspects of de-
tection models: they can be adjusted to prioritize either fewer
missed or fewer incorrect detections. In this study, we used the
confidence threshold where precision and recall are equal to
prioritize both equally. With this confidence score threshold,
the best performing YOLO11 multi-class model performed
better than the single-class model. However, the single-class
YOLO11 model achieved higher overall AR 5 than the multi-
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class models when no confidence score threshold was used due
to higher recall values for confidence scores below Se-3.

The models’ detection performance across the nine differ-
ent trawl and video conditions revealed expected and unex-
pected findings. Lower performance during high fish density
was expected due to this condition causing partially occluded
fish that can make detection and classification more challeng-
ing. The greater variability of model performance for salmon
was also expected due to fewer salmon annotations included
in our dataset. The higher detection performance for medium
fish density with high abundance of krill and the higher me-
dian APy 5 and ARy s for salmon compared to pollock during
high fish and krill density were unexpected. We believe this
may be due to fewer fish being detectable and annotated by
people during these conditions. During clear video conditions,
fish barely visible in our videos were annotated on the sides,
bottom, and farther back in the net and often missed by the
model. When high densities of krill were present in the videos,
people did not detect fish in these locations often leading to
fewer annotations for the models to possibly miss.

Our YOLO11 model detected pollock and salmon in these
videos from an Alaska commercial pollock trawl, a high-
volume pelagic trawl fishery, in a comparable fashion to what
was observed for object detection performance in the dem-
ersal Nephrops fishery (Sokolova et al. 2021). The detection
prediction accuracy was approximately 10% lower than what
Allken et al. (2021) achieved for fish detection for Deep Vision
imagery collected in a trawl survey where the abundance of
fish was much lower, images with krill present were excluded,
and the camera capture environment was more controlled.

Overall, the precision achieved by YOLO11 was relatively
high despite the challenges present in these videos, the differ-
ences between our imagery and the COCO dataset used to
pre-train the models (Suppl. Figure 1), and our lack of hyper-
parameter optimization. The high densities and overlap of fish
in some of our video and the non-canonical camera views pre-
sented additional object detection challenges that may not be
present in much of the COCO dataset. We chose not to opti-
mise hyperparameters to balance our objectives to establish a
baseline understanding of how well the available pre-trained
models performed on our dataset. A better way to compare
the performance between these models is to conduct hyperpa-
rameter optimization for each.

Model validation on fishing tows

The multi-class YOLO11 model did better than the single-
class model at detecting the salmon present in the full fish
tows, but salmon false positives were common, especially in
the multi-class model, due to misclassification of pollock and
herring. The increase in salmon detection for the multi-class
model compared to the single-class model was slightly evident
in the detections across full tows and more evident when the
detections were used to infer general salmon presence. The
salmon false positives due to misclassification of pollock and
herring highlight the challenges of classifying fish species with
morphological similarities when the imagery is not ideal. In-
cluding video clips with herring in the annotated dataset and
collecting better video imagery would help these models dif-
ferentiate between these fishes. Furthermore, since the multi-
class model differentiated between salmon and pollock well,
training a model to detect all three could be promising and
could benefit the pollock fishery since herring also has catch
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limits in the Alaska pollock fishery (NPFMC 2024). However,
increasing the number of classes can decrease other aspects of
detection performance (Dean et al. 2013), and these trade-offs
should be evaluated.

Despite object detection error, predicting general salmon
presence using our YOLO11 model and our presence predic-
tion algorithm showed the feasibility for a semi-automated
review to reduce the time for analysis for videos collected in
high-volume trawl fisheries. By performing detection filtering
using thresholds for the detection confidence score and con-
secutive frames with detections, which were both shown to
be important, we were able to exclude over 80% of video
frames from potential review while missing fewer than 1% of
salmon. Furthermore, our code and models processed tows in
just hours, with an approximate 90 fps processing speed, com-
pared to an experienced video reviewer needing a few days to
weeks to review a tow. The actual time savings from using our
model and salmon presence prediction algorithm cannot be
estimated because our metrics are imperfect indicators of the
semi-automated review process. The proportion of included
frames being 15% does not necessarily mean that video re-
view would be 85% faster, but we believe it will be less time
than reviewing 85% more frames. It may be possible to im-
prove the presence prediction algorithm by considering other
features for filtering, such as bounding box size, and imple-
menting the algorithm with better performing detectors.

In addition to hyperparameter optimization and expanding
our annotated dataset, other options that may improve de-
tection model performance include increasing the annotated
data using data augmentation and evaluating different meth-
ods for species classification or new object detection models.
In this study, only a few data augmentation techniques were
evaluated with a small data subset for EfficientDet and no
performance increases were achieved. Further evaluation of
data augmentation options with a larger dataset could lead to
improved performance or better performance when applying
these models to new video. For example, using an automated
approach to find optimal data augmentation options has in-
creased object detection performance across different datasets,
dataset sizes, backbone architectures and detection algorithms
(Zoph et al. 2020). Another option to possibly increase detec-
tion performance is to use more information from tracking
or multiple detectors. If reliable object tracking was imple-
mented, weighing the classifications of all detections in a track
could result in better fish classification (Dawkins et al., 2024).
Also, weighing the predictions of multiple or different types of
classifiers may improve fish classification accuracy (Xie et al.
2019). Lastly, new object detection models are released often
and models that achieve higher performance on benchmark
datasets may be able to achieve higher performance on our
dataset.

The best option for increasing object detection performance
is improving the quality of video collected in the trawl. The
camera setup and capture environment used to collect these
videos were the most significant factors that limited the de-
tection performance. The illumination and placement of the
camera made it challenging to see and distinguish identifying
features of salmon or pollock on the bottom and sides of the
net or in the background. It was challenging for people famil-
iar with identifying salmon to review these videos and recog-
nise every salmon. We found some discrepancies in the salmon
records when the salmon presence frame data was created, and
Yochum et al. (2021) acknowledged that the limited visibility
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and the presence of high densities of pollock or krill likely led
to salmon being missed and underestimated by people. Fur-
thermore, correctly classifying some fish as salmon or pollock
was difficult and took input from multiple people to arrive at
a consensus. Some modifications to the camera or net setup
that might help with these challenges include the use of ad-
ditional lighting, which may have impacts on fish behaviour;
use of additional cameras to view fish at the bottom of the
net better and provide more opportunity to see all fish when
density is high; positioning cameras to have a perpendicular
view of fish to allow morphological differences to be more ap-
parent and reduce issues with background fish; adding solid,
high-contrast material around the net or a full compartment
(e.g. DeepVision; https://www.deepvision.no/) to enhance illu-
mination and object contrast; or modifying the net to control
the flow and location of fish past the camera.

Application in fishery

Our object detection model and salmon presence algorithm
could be used to reduce the time to generate data from video
footage collected in the Alaska commercial pollock fishery to
evaluate salmon BRDs and accelerate the pace of salmon by-
catch reduction research for this fishery. The salmon presence
prediction results showed the potential for a semi-automated
video review. However, to gain the greatest reduction in video
review time, more work is needed to build user-friendly tools
that allow for models like ours to be used effectively by video
reviewers.

In addition to semi-automating and increasing the efficiency
of video review to support bycatch reduction research, object
detection could be used in the Alaska pollock fishery to inform
vessels of salmon bycatch (e.g. an alarm) and target catch in
real-time or to support active bycatch reduction devices that
are currently being researched. However, for the fishery to ever
adopt these tools, further steps are needed to address issues
with our annotated dataset, conduct further model evalua-
tion, and develop a model with better salmon detection per-
formance.

In the Alaska pollock fishery, relatively low numbers of Chi-
nook salmon bycatch can shut down the fishery, so the detec-
tion of all Chinook salmon is important. False positive salmon
detections would be preferable over missed salmon, but ob-
taining a relatively low number of false positives would be
ideal. A different camera implementation will likely be needed
to achieve this high level of performance, but simply using our
model with a higher confidence score threshold would reduce
the salmon false positives while increasing the likelihood of
missing salmon. A model that meets or exceeds the perfor-
mance of people could be acceptable to use in the fishery and
further model development may make this possible.

When using object detection models on fishing vessels,
model performance should be evaluated initially and then
periodically as a quality control measure due to differences
between vessel cameras, nets, and tows, which cause natu-
ral real-world variations that impact performance (Hendrycks
et al. 2021). Model performance may vary for different
vessels, trawls, catch compositions, and tow speeds. A single
detection model might generalise well for different vessels if
the model was trained with imagery captured from many ves-
sels and fishing environments, which may be achievable over
time with data sharing and continual model training. How-
ever, it may be necessary to train custom models for each ves-

sel using imagery captured from only that vessel to achieve
the highest performance. If that is the case, each vessel’s data
could be used to fine-tune and optimise performance of a sin-
gle model like we did in this study.

For most commercial fishery research and applications, the
total number of fish or biomass of a species is more useful than
relative information about fish detections. To achieve this,
these detections could be used to track and count individuals,
or possibly converted to a biomass. For accurate biomass esti-
mates, a measure of model performance, fish length frequency
distribution, and possibly the rate that fish flow through the
net would need to be accurately estimated. The camera angle
used in this study and the high densities of fish that can be
present would make tracking and counting challenging, but
it may be possible with suitable approaches. For biomass es-
timates, fish length frequency distributions can be estimated
from the catch (Gulland and Rosenberg 1992), or stereo-
cameras could be used to measure this directly from the videos
(Williams et al. 2010, Rosen et al. 2013). If fish flow is needed,
the detections or tracks of fish could provide estimates of this,
or water flow measurements could suffice for passive swim-
ming fish.

Deep learning is a powerful tool for automating imagery
analysis and our results suggest that this technology has
tremendous potential, but should be used thoughtfully and
with a thorough understanding of its strengths, limitations,
and the scope of data used for training and evaluating. Un-
derstanding the limitations of detection models is critical for
operational use for bycatch reduction in commercial fisheries.
Also, it is essential to consider all aspects of the task to be
automated before deciding to use deep learning methods as
the solution. Developing reliable automated methods can re-
quire great initial effort in data collection and curation, anno-
tation, and model development (Goodfellow et al. 2016) and
should be weighed against potential time savings compared
to traditional methods. As shown here and in other studies,
deep learning methods may ultimately still require people in
the processing or analysis loop to verify detections, tracks, or
counts of objects (Wilchek et al. 2023). However, we have
shown that YOLO11n has the potential to reduce the time
needed to review videos collected in the trawls of the Alaska
pollock fishery and provide salmon awareness for salmon by-
catch reduction methods in this fishery. Given the performance
we observed for the pollock fishery, we believe other high-
volume, pelagic trawl fisheries could use deep-learning object
detection methods to assist with video review or monitoring
to support bycatch reduction efforts.

Conclusions

The open-source pre-trained object detection models Effi-
cientDet D2 and YOLO11n were trained and evaluated us-
ing a subset of annotated video collected in the trawl of an
Alaska pollock fishing vessel to determine if deep-learning
could be used to support salmon bycatch reduction in this fish-
ery and possibly other high-volume, pelagic trawl fisheries. Us-
ing an annotated dataset of almost 17 000 frames with 11 572
salmon and 73 394 pollock annotations to train and evalu-
ate models, we found that YOLO11n performed better than
EfficientDet D2 at detection of salmon and pollock in trawl
videos and within the range of the variability we measured be-
tween annotators. For the evaluation dataset, the YOLO11n
multi-class models detected on average 90% of the annotated
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salmon and pollock, and 72% of the models’ predictions were
correct when using an IoU threshold of 0.5. The YOLO11n
multi-class model for salmon and pollock also performed bet-
ter than a single-class salmon model.

When using the YOLO11n multi-class detection model
with a salmon prediction algorithm we developed to anal-
yse full fishing tows, salmon presence was predicted for 15%
of the total video frames and only 5 of 664 salmon pres-
ences were missed. This level of performance would support
a semi-automated video review process that would be more
efficient than a fully manual review and assist in expediting
video analysis to evaluate salmon bycatch reduction devices in
the Alaska pollock fishery. The YOLO11n model also shows
promise for being able to predict salmon for bycatch reduction
methods that require real-time monitoring, but the models will
need further development and evaluation to achieve the per-
formance level required for these applications. Improvements
to the trawl camera setup such as a high contrast background,
a perpendicular flow view, and additional lighting could in-
crease object detection performance most by providing higher
quality of imagery data.

This work showed that deep learning object detection meth-
ods are accessible and robust. With just a few changes to
model hyperparameters and the use of a relatively small anno-
tation training dataset compared to the COCO dataset used
for pre-training the models, we were able to detect fish at
comparable rates to the variability measured between people
conducting this task. The methods that we used to evaluate
our model performance provided valuable insight into per-
formance objectives, trade-offs, and improvements needed to
use these models to support bycatch reduction efforts in high-
volume trawl fisheries. We believe this information and our
annotations, video imagery, and models that we provided can
support the continued development of automated video and
image processing methods for bycatch mitigation innovation
in the Alaska pollock fishery.
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