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Abstract 

Bycatch reduction devices (BRDs) are used in the Alaska walleye pollock ( Gadus chalcogrammus ) fishery to reduce Pacific salmon ( On- 
corhynchus spp.) bycatch. Evaluation of BRD effectiveness often requires people to process collected or live-feed video. Deep learning 

can be used to detect and classify fish in video to support BRD and other fisheries bycatch work. We fine-tuned and evaluated the 
detection model EfficientDet and YOLO11 to find salmon and pollock in videos collected inside a trawl using 11 572 salmon and 73 394 
pollock annotations from 16 989 video frames. We evaluated model performance across all data and during high abundances of krill, 
varying fish density, camera occlusions, low lighting, and combinations of these using five-fold cross validation. The best performing 

model was further evaluated by applying it to videos from three fishing tows not used for model training, using it in a salmon presence 
algorithm that was developed to assess whether an efficient semi-automated video review process was feasible, and comparing it 
with the performance of a salmon-only detection model. We found that the YOLO models performed better than EfficientDet and on 

average detected 90% of salmon and pollock with 72% accuracy using a 50% detection overlap threshold. The YOLO models performed 

comparably to annotators for fish detection: the detection performance was higher for pollock and lower for salmon than the variability 
measured between annotators. Model performance across trawl and video conditions was more variable for salmon and generally 
lowest during high fish densities. The YOLO salmon and pollock model performed better than the salmon-only model when using an 

optimal confidence score threshold. When applied to full fishing tows, the YOLO salmon and pollock model incorrectly detected Pacific 
herring ( Clupea pallasi ) as salmon, and correctly predicted 99.3% of salmon presences while reducing the number of video frames 
needing to be reviewed by 85%. Overall, the models detected salmon and pollock well inside a pollock trawl, but camera placement, 
lighting, and occlusions presented challenges. We provide our annotated dataset, salmon presence algorithm, and recommendations 
for optimising video quality in trawls. 

Keywords: deep learning; computer vision; bycatch reduction; fisheries sustainability; trawl gear 
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Introduction 

In commercial fisheries, video collection has increased over 
recent decades with the goal of improving fishing operational 
awareness, meeting regulatory requirements, and enabling re- 
search to improve fishing efficiency and sustainability. This 
increase in video collection has primarily been driven by ad- 
vancements in camera technologies that have produced a large 
selection of relatively low-cost, high quality, and readily avail- 
able camera systems that can be deployed in many different 
environments. The rise of video collection has increased the 
need for resources to monitor and review footage, which can 

be a time-consuming, tedious, and expensive task for people.
These challenges can lead to delays in results and innovation.
Fortunately, over the last few decades, there have also been 

major advancements in computer vision and deep learning 
tools to automate video analysis and reduce the time and cost 
of generating large video datasets (Zhang et al. 2021 ). 

Deep learning is a subset of machine learning inspired by 
how the human brain works that uses multiple layers of sim- 
pler representations to learn and form hierarchical represen- 
Published by Oxford University Press on behalf of International Council for the E
employee(s) and is in the public domain in the US.
ations of complex data from experience, which then allows
omputers to recognize complicated patterns and make pre- 
ictions (Goodfellow et al. 2016 ). Deep learning models can
e used to automate the detection, classification, and tracking 
f subjects in images and videos. Convolutional neural net- 
orks (CNNs), a class of deep learning models, are widely
sed for image processing and have been applied in various
ndustries to semi-automate or fully automate video and im- 
gery analysis tasks. They have been used to detect product de-
ects in manufacturing (Wang et al. 2019 ) and diseases in med-
cal imaging (Liu et al. 2019 ), to allow vehicles, equipment,
nd robots to navigate autonomously (Grigorescu et al. 2020 ),
nd to reduce the time for reviewing videos for surveillance
Sreenu & Durai 2019 ) and commercial fishing electronic 
onitoring applications (Tseng and Kuo 2020 ). Some notable 

xamples of detection CNNs include EfficientDet (Tan et al.
020 ), You Only Look Once (YOLO; Redmond et al. ), and
aster region-based CNN (R-CNN; Ren et al. 2017 ) 
For fisheries research and other marine applications, there 

ave been many studies that successfully used CNNs to 
xploration of the Sea 2025. This work is written by (a) US Government

https://orcid.org/0009-0001-8792-6919
mailto:Katherine.wilson@noaa.gov


2 Wilson et al.

c  

a  

2  

2  

t  

t  

v  

b  

fi  

e  

e  

l  

a  

a  

g  

n  

(  

s  

d  

w
 

s  

fi  

a  

u  

a  

w  

c  

p  

C  

9  

o  

A  

(  

g  

fi  

i  

g  

a  

c  

(  

fi  

o  

o
 

i  

fi  

p  

w  

N  

M  

l  

t  

T  

p  

e  

(  

f  

C  

t  

s  

p  

H  

a  

i  

d
 

f  

w  

a  

c  

i  

i  

2  

o  

c  

t  

B  

d  

e  

l  

P  

v  

Y  

a  

o  

B  

i  

t  

t
 

l  

b  

n  

s  

s  

h  

s  

b  

t  

t  

b  

f  

t  

a  

e  

i  

p  

i  

m  

o  

m  

t  

a  

p  

k

M

V

W  

t  

e  

(  

(  

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/82/9/fsaf168/8262706 by U
niversity of W

ashington user on 25 Septem
ber 2025
lassify or detect marine fish species to assist with imagery
nalysis in unconfined open-water conditions (Salman et al.
016 , Qin et al. 2016 , Ditria et al. 2020 , Ovchinnikova et al.
021 , Alaba et al. 2022 ). However, the background condi-
ions and number of fish present in the imagery for many of
hese studies are less challenging than what can occur in high-
olume commercial trawl fisheries. Deep learning has also
een successfully used at aquaculture farms, which are con-
ned areas with high densities of fish, to monitor fish for dis-
ase, feeding behaviour, and more (Zhao et al. 2021 ). Zhang
t al. (2020) used CNNs to detect fish in images from an At-
antic salmon ( Salmon salar ) aquaculture farm in China with
 95% detection accuracy. The Tidal project, originally by X,
lso used deep learning to track Atlantic salmon for Norwe-
ian aquaculture farms and have had enough success to gar-
er support for commercializing their aquaculture platform
 https://x.company/projects/tidal/). Despite having high den-
ities of fish, the object detection task for aquaculture farms
o not have to distinguish between different species of fish
hich is necessary for bycatch detection in trawls. 
Applications of deep-learning for trawl surveys have more

imilarities to the conditions observed in commercial trawl
sheries and have shown promise for automating imagery
nalysis. Garcia et al. (2020) and Allken et al. (2021) eval-
ated deep-learning models respectively for fish segmentation
nd detection in imagery from Deep Vision (Scantrol, Nor-
ay; Rosen et al. 2013 , Underwood et al. 2014 ), a trawl

amera system developed to identify and measure fish during
elagic trawl surveys. Garcia et al. (2020) used a Mask R-
NN to segment fish and found that the model could detect
6% of non-overlapping fish and 79% of the overlapping or
ccluded fish, but they did not evaluate species identification.
llken et al. (2021) trained RetinaNet to identify blue whiting

 Micromesistius poutassou ), Atlantic herring ( Clupea haren-
us ), Atlantic mackerel ( Scomber scombrus ), and mesopelagic
shes in images with no krill present and achieved approx-
mately 85% prediction accuracy when requiring a 50% or
reater overlap of predictions and annotations. However, the
mount of blue whiting, and Atlantic herring and mackerel
aught during the survey tows used in this study were low
947 or less fish) compared to high-volume commercial trawl
sheries like the pollock fishery whose tows usually contain
ne to two orders of magnitude more pollock (i.e. hundreds
f metric tonnes of pollock). 
One driver for video collection and the use of deep learn-

ng in commercial fisheries is to develop and evaluate the ef-
cacy of new, innovative technologies and methods to im-
rove fishing performance or bycatch reduction. As a step to-
ards developing real-time catch information for the demersal
ephrops (Norway lobsters; Nephrops norvegicus ) fishery, a
ask R-CNN model was used to detect and count Norway

obsters and three other categories of fish with 75% predic-
ion accuracy and 84% detection rate (Sokolova et al. 2021 ).
o support the development of commercial trawl systems ca-
able of in-situ release of bycatch (i.e. active selection), Yi
t al. ( 2024 ) developed a Coordinate-Aware Mask R-CNN
CAM-RCNN) to increase performance generalisation for dif-
erent sets of imagery (e.g. imagery from different vessels). The
AM-RCNN had 31% and 57% prediction accuracy respec-

ively for imagery from a new source and imagery from the
ource used for training. An Institut Français de Recherche
our l’Exploitation de la Mer project (Euronews 2022 ) and a
eriot-Watt University and Fisheries Innovation and Sustain-
bility partnership project (Hollely 2023 ) are also working to
ntegrate deep learning into trawl systems to enable automatic
etection, sorting, and retention or release of fish. 
Many trawl fisheries could benefit from real-time catch in-

ormation or active selection gear, including the commercial
alleye pollock ( Gadus chalcogrammus; hereafter referred to

s “pollock”) fishery in Alaska where Pacific salmon ( On-
orhynchus spp.; hereafter referred to as “salmon”) bycatch
s a concern. The pollock fishery is the second largest fishery
n the world, with 3.4 million tonnes captured in 2022 (FAO
024 ). The Alaskan fishery accounts for approximately 40%
f these landings (Fissel et al. 2016 ). If the prohibited species
atch limits for Chinook salmon ( O. tshawytscha ) are reached,
he fishery is closed by sector and season (Ianelli et al. 2019 ).
RDs known as “salmon excluders” were developed to re-
uce salmon bycatch in this fishery. The efficacy of salmon
xcluders has often been evaluated by reviewing video col-
ected to monitor these devices during fishing (Gauvin and
aine 2004 , Gauvin et al. 2011 , Gauvin et al. 2013 , Gau-
in et al. 2015 , Gauvin 2016 , Lomeli and Wakefield 2019 ,
ochum et al. 2021 ). There are also research efforts to develop
ctive selection BRDs that use live-stream video and remotely
perated devices within the trawl for this fishery (Rose and
arbee 2022 ). Developing CNNs to automate video process-

ng to detect fish for these applications as well as other tools
o support bycatch mitigation could provide great benefits for
hese research efforts and the pollock fishing industry. 

Despite on-going efforts in other fisheries to develop deep-
earning models for bycatch applications, no similar work has
een done in the Alaska pollock fishery and there are currently
o deep-learning models trained to recognise pollock and
almon. Additionally, as far as we know, none of the previous
tudies have evaluated the performance of fish detection in a
igh-volume, pelagic commercial trawl fishery. Therefore, we
elected two open-source object detection models with high
enchmark dataset performance, EfficientDet and YOLO11,
o fine-tune and evaluate for salmon and pollock detection in
he pollock fishery in Alaska. We also developed a detection-
ased salmon presence prediction algorithm to evaluate the
easibility of semi-automated video review for bycatch reduc-
ion efforts. We used videos collected during experimental tri-
ls of a salmon excluder (Yochum et al. 2021 ) to train and
valuate the detection models to identify salmon and pollock
n the trawl for 10 different trawl and video conditions: krill
resence, varying fish density, camera occlusions, low light-
ng, and combinations of these. A single class salmon-only
odel was also trained and evaluated in the same manner as
ne of the multi-class models to assess whether a single-class
odel could perform better at the task of salmon detection

han a multi-class model. The detections from the multi-class
nd single-class models and their respective salmon presence
redictions were also compared for three fishing tows with
nown salmon occurrences. 

aterials and methods 

ideo collection and review 

e used videos that were collected in the pelagic trawl of
he F/V Pacific Explorer in 2019 and 2020 in Alaska’s East-
rn Bering Sea during the pollock commercial fishing season
 Fig. 1 A) to evaluate the performance of a salmon excluder
Yochum et al. 2021 ). For both years, video was collected dur-

https://x.company/projects/tidal/
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Bering Sea
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Figure 1: Map of Alaska showing (A) the eastern Bering Sea area of data collection in the yellow box with an inset showing the location in the northern 
hemisphere marked by a star. Below the map are examples of (B) walleye pollock ( Gadus chalcogrammus ) and (C) Pacific salmon ( Oncorhynchus spp.) 
from the catch. 
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ing multiple research tows in the summer season. The Sexton 

Corporation’s (Salem, OR) trawl camera systems, equipped 

with a Mobius (Rotterdam, The Netherlands) high-definition 

action camera and white LED lighting that illuminated from 

both sides of the camera, were placed at the entrance to the 
excluder on the inside of the top netting panel facing aft to 

view the fish at the entrance of the excluder ( Fig. 2 ). The LED 

lighting system was capable of producing a minimum of 2028 

lumens when operated at full brightness. Video was collected 

at 30 frames per second (fps) at 720p in 2019 and 1080p in 

2020. Additionally, for all tows, the vessel’s captain estimated 

the total pollock catch for the tow. The catch estimate and in- 
formation about when the net was placed in the water, fishing 
began and ended, and the net was hauled back were recorded.

Yochum et al. (2021) quantified salmon escapement rates 
and the number of salmon that entered the excluder for the 
2019 tows by having trained personnel review the videos and 

record when salmon were first seen. The 2020 tows were also 

reviewed by trained personnel for the same purpose, but the 
time that salmon were last seen in the video was also recorded 

to support additional analysis. 

Annotation 

Four people annotated a random selection of the video footage 
that had previously been reviewed and had records of when 

salmon were detected to train and evaluate models. The 
salmon records from four fishing tows from 2019 and three 
tows from 2020 were used to randomly select 168 clips of 
ootage with salmon present and extract frames that corre- 
ponded with these times to create videos for annotation. We
sed footage from seven tows across both years to capture
ariability in fishing conditions. For 2019 data, which only 
ad records of when salmon were first seen, two second clips
ere used due to the absence of information about when

almon were last seen in the videos. A smaller selection of 16
lips without salmon or any fish were also randomly selected
nd included to ensure the dataset was representative of the
ost possible scenarios during fishing operations for model 

raining and evaluation. In total, our dataset consisted of a
84 video clips. 
All annotators were trained to use the Computer Vision 

nnotation Tool (CVAT; https://www.cvat.ai/) to annotate 
he tracks of two classes of objects, salmon and pollock, us-
ng rectangular bounding boxes with fish attributes and tag 
rames for different trawl and video conditions. For tracks,
VAT assigns a unique identifier to each tracked object, in this
ase every salmon and pollock in the video, and the identifier
s associated with all the respective bounding boxes. CVAT 

an linearly interpolate bounding boxes for tracks based on 

rovided bounding boxes. Annotators were trained to check 

nd, if needed, correct the predicted boxes for each frame if
his feature was used. 

Subsets of the same data were annotated by the four anno-
ators to assess accuracy and consistency as part of the train-
ng process. The lead annotator reviewed these annotations,
etermined when each annotator was ready to annotate other 

https://www.cvat.ai/
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camera
 view

trawl mouth  codend 

~2m

Figure 2: Example image of the salmon excluder (Yochum et al. 2021 ) shown in the last taper section of the net with the camera placement (white box) 
and the approximate field of view (dashed triangle) shown. The diameter of the net is approximately 2 m at the beginning of the excluder. 
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ata used in this study, selected a single set of training annota-
ions to include in the final annotation dataset, and reviewed
nd modified these and all further annotations to ensure con-
istency and accuracy. 

We used several video tags and annotation attributes to dif-
erentiate among common trawl and video conditions. These
ags and attributes enabled more granular model training and
valuation, and they were all clearly defined to provide con-
istency among annotations. Video tags were used to indicate
ix background conditions: (1) the presence of krill ( Euphausi-
cea ); (2) camera occlusions; (3) low lighting or poor visibility;
nd (4–6) low, medium, and high fish density (predominantly
ollock; Fig. 3 ). Krill tags were used when the presence of krill

mpacted an annotator’s ability to distinguish the edges of fish.
amera occlusions were defined as having 50% or more of

he camera view blocked by an object and tagged accordingly.
ow lighting tags were used if 50% or more of the netting
ormally visible in the frame was too dark to see the individ-
al meshes. The fish density was defined by the proportion of
he netting that was visible over a single video annotation clip:
% to 25% of the netting visible was high fish density, 26% to
0% was medium density, and 51% or more of the net visible
as low density. Fish annotations were marked as occluded
hen 50% or more of the view of the fish was blocked or
ith the poor visibility attribute if a fish’s eyes or fins were
ot visible. Additionally, annotation attributes were used to
ark occluded or poorly visible fish annotations. 
All salmon and pollock were annotated from the time they

ould first be identified as a fish entering the video scene (i.e.
he camera’s field of view) until they were no longer distin-
uishable as fish as they either left the scene or began to vanish
rom view as they moved out of the camera’s detection range.
nly a small portion of the fish needed to be visible to allow
eople to identify them. Fish tracks that began to vanish out
f the camera’s detection range were ended when the fish first
ecame indistinguishable from the background, and the fish
as no longer annotated if it became visible in the detection

ange again unless it had clearly made a permanent change
n swimming direction and was moving forward in the net. If
sh momentarily became fully occluded by other objects or
eft the scene, the original fish track was continued if annota-
ors were confident it was the same fish. If it was ambiguous
or any reason, a new fish track was started. 

For each tow, we calculated (1) the total number of frames;
2) frames without salmon and pollock; and (3) salmon and
ollock tracks and bounding boxes included in the final an-
otation dataset used for model training and evaluation. We
lso calculated the total number of frames tagged as the three
ifferent levels of fish densities (low, medium, or high) with
o additional tags, and tagged as these fish densities with any
f the two other camera and background condition tags (krill,
 c  
ccluded or low light) or the combination (krill and occluded
r low light) for a total of 12 possible conditions. 

nnotator performance baseline 

he annotator training dataset and Microsoft Common Ob-
ect in Context (COCO) metrics, a standard metric for measur-
ng object detection performance, were used to measure vari-
bility among annotators and provide a baseline from which
o compare the performance of people and automated detec-
ors. An unknown level of variability was expected due to sub-
ective choices about bounding box size and classification, and
he start and end of track annotations. The dataset had 587
o 902 frames of overlap between only four pairs of anno-
ators due to one annotator not having overlapping training
ata with two of the other annotators. 
We calculated the COCO metrics Average Precision (AP),
ean Average Precision (mAP), Average Recall (AR) and mean
verage Recall (mAR) (COCO Consortium 2015 ) between
nnotator-pairs using the COCO application programming
nterface for Python (PyPI 2018 ). AP and AR are for single
lasses, and the mAP and mAR are respectively the mean AP
nd AR for all classes for multi-class models. 

The AP is a measure of precision (Eq. 1 ) that conveys the
ccuracy of detections. It is a measurement of the number of
orrect (true positives; TP ) detections relative to the total cor-
ect and incorrect detections (false positives; FP ). When ap-
lied to annotators, it is a measure of how many annotations
re the same compared to the total number of annotations of
he annotator being evaluated. COCO’s AP and mAP calcu-
ate the average precision across 101 recall values that range
rom zero to one and 10 intersection over union (IoU) thresh-
lds that range from 0.5 to 0.95. The IoU threshold is the
ercentage of overlap required for a detection or, in this case
he annotation, to be treated as a match with an annotated
round-truth object. 

Recall (Eq. 2 ) measures the ratio of annotated objects de-
ected by a model compared to the total number of annota-
ions, which includes missed detections (i.e. false negatives;
N ). When applied to annotators, it is a measure of how
any annotations are the same relative to the total number of

round-truth annotations. AR (Hosang et al. 2015 ) and mAR
s the recall value averaged over the same IoU thresholds used
or AP and mAP. 

precision = T P 
T P + F P 

(1)

recall = T P 
T P + F N 

(2)

The COCO metrics use the confidence scores assigned by
etection models and range from 0 to 1 (i.e. 0% to 100%
onfidence) to rank all detections and calculate the precision



Commercial fishing sustainability and innovation in the Alaska walleye pollock 5

(A) (B)

(D) (E) (F)

(C)

Figure 3: Example video frames of when tags would be used to mark (A) the presence of krill, (B) occlusions, (C) low lighting, and to define fish density 
as (D) low, (E) medium, or (F) high. A jellyfish is occluding the camera in (B). A single Pacific salmon ( Oncorhynchus spp.) is present in (C) and (F), and 
two are present in (E). The remaining fish in the images are walleye pollock ( Gadus chalcogrammus ). 
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and recall for each detection using the pre-defined IoU thresh- 
olds. The AP, mAP, AR, and mAR for all detections is then cal- 
culated using these values. These metrics range from zero (i.e.
all detections were incorrect or all annotated objects missed) 
to one (i.e. all detections correct or all annotated objects were 
detected). 

To use the COCO metrics to compare annotators, we cal- 
culated the mean and standard deviation of AP, mAP, AR, and 

mAR, and the AP, mAP, AR, and mAR for bounding boxes 
with 50% or greater overlap (respectively AP0.5 , mAP0.5 ,
AR0.5 , mAR0.5 ) between pairs of annotators. These metrics 
were calculated twice for each pair of annotators: first with 

one set of annotations acting as the ground-truth and again 

with the other set of annotations acting as the ground-truth.
The mean and standard deviation of the two values were re- 
ported as the metric for each pair. The annotations that were 
treated as predicted detections were all assigned a confidence 
score of one. 

Model training and evaluation 

Model selection 

We evaluated an EfficientDet (Tan et al. 2020 ) and YOLO11 

(Khanam and Hussain 2024 ) model for salmon and pol- 
lock detection. These two models were selected because at 
the time of this study they performed better on the COCO 

2017 dataset than other open-source and widely used models.
COCO 2017 is an object detection benchmarking dataset that 
allows people to compare the performance of different mod- 
els by providing a consistent training and evaluation dataset.
The COCO 2017 dataset consists of more than 200 000 la- 
belled images with 1.5 million objects that represent 80 ob- 
ject classes (Lin et al. 2014 , Suppl. Figure 1 ). For this study,
we selected pre-trained EfficientDet D2 and YOLO11n mod- 
els that were trained with and optimized for the COCO 2017 

dataset. Optimisation involves tuning configurable hyperpa- 
rameters (model parameters that are set before training) to 

achieve higher performance. Pre-trained models were chosen 

instead of using untrained models to reduce the time and com- 
putational resources required for training and possibly pro- 
uce a model with greater prediction generalisation. The Ef- 
cientDet model by the Tensor Flow Model Garden (Yu et
l. 2020 ) and the YOLO11 model by Ultralytics (Glenn et al.
023 ) were used. 
Out of eight available EfficientDet models designed and 

re-trained for different image sizes, EfficientDet D2 (here- 
fter referred to as EfficientDet) for 768 × 768 pixel images
as chosen because its image size was the closest match to
ur lower resolution videos (720p, 1280 × 720 pixels). We 
hose the smallest and most computationally efficient of five 
vailable YOLO11 models, YOLO11n (hereafter referred to 

s YOLO11), since all were pre-trained for 640 ×640 pixel
mages. 

ross-validation dataset 
e used five-fold cross-validation to train and evaluate the 

bject detection models as multi-class models for salmon and 

ollock classes (hereafter referred to as the multi-class model).
or this cross-validation, our 184 annotated video clips were 
andomly assigned to one of five data subsets and, when nec-
ssary, clips were re-assigned to balance the number of clips
f the different trawl and video conditions across subsets. Five
ifferent models were trained and evaluated with all of these
ata subsets. For example, one model was trained with sub-
ets 1, 2, 3, and 4 and evaluated on subset 5 while another
odel was trained with subsets 2, 3, 4, and 5 and evaluated
n subset 1. 

odel fine-tuning 
e fine-tuned the pre-trained EfficientDet and YOLO11 mod- 

ls with our annotated dataset to detect salmon and pollock
espectively using TensorFlow 2 and the Ultralytics package 
nd most of the default hyperparameters that were provided 

or these models. We used default hyperparameters to keep 

he fine-tuning process simple and evaluate the performance 
chievable with hyperparameters optimized for a large and 

iverse image dataset. The batch size was reduced to four
o accommodate the GPU and memory limitations of our 
omputing resources, and each model’s default optimizer’s 

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf168#supplementary-data
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Table 1. EfficientDet D2 and YOLO11n hyperparameters for training, evaluation, and prediction. 

Type Hyperparameter EfficientDet D2 YOLO11n 

Training Optimizer momentum auto (SGD + Adam)
Initial cosine learning rate 0.001∗ 0.001∗

Final cosine learning rate NA 1E-05 
Momentum 0.9 0.937 
Weight decay NA 5E-4 
Warm-up epochs 0.046∗ 0.05∗

Warm-up momentum NA 0.9∗

Warm-up learning rate 5E-4∗ 5E-4∗

Box loss weighted smooth L1 complete IoU 

Classification loss weighted sigmoid focal ( γ= 1.5, α= 0.5) binary cross-entropy 
Box loss gain 1 7.5 
Classification loss gain 1 0.5 
Distribution focal loss gain NA 1.5 
Image size 768 × 768 768 × 768∗

Batch size 4∗ 4∗

Data Augmentation None None 

Evaluation and prediction NMS IoU 0.5 0.5∗

NMS score threshold 1E-8 1E-8∗

Max detections per image 100 100 
Image size 768 × 768 768 × 768∗

The first column indicates whether the hyperparameter is for training or evaluation and prediction. NMS refers to non-maximum suppression, SGD is stochastic 
gradient descent, and NA is used for model hyperparameters that were not used or not user-defined. Settings changed from the pre-trained model’s default 
values are marked by a “∗.”. 
Insert Source Here 
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earning rates were adjusted to account for the lower batch
ize and to use similar settings ( Table 1 ). Optimizers are
sed to minimize the loss functions during training. Effi-
ientDet uses a momentum optimizer (Polyak 1964 ) and
OLO11 uses Ultralytic’s auto optimizer (combination of
damW (Loshchilov and Hunter 2017 ) and Stochastic Gradi-
nt Descent (Amari 1993 ) optimizers). YOLO’s post process-
ng non-maximum suppression (NMS) settings, which helps
o eliminate duplicate detections, and image size were set
o defaults used for EfficientDet. For all other EfficientDet
nd YOLO hyperparameters, the default values of the pre-
rained models were used, including the maximum detec-
ions default of a 100 detections per image, which is higher
han the number of objects typically present in our video
rames. 

Using a small subset of annotated data, we explored data
ugmentation methods with EfficientDet, and determined they
id not provide performance gains. Therefore, data augmen-
ation was not used for fine-tuning EfficientDet or YOLO11.
he data augmentation methods tested included random im-
ge colour distortion, horizontal flips, scaling and cropping,
nd brightness and contrast adjustments. 

The EfficientDet models were trained for 15.4 epochs and
he YOLO11 models were trained between 186 and 314
pochs. The number of epochs for the EfficientDet models was
etermined by monitoring model loss values while training
nd finding the approximate location where the loss had de-
reased to its lowest value prior to steadily increasing. The
raining epoch at this loss minimum should optimize per-
ormance while limiting overfitting of the data. Training for
he YOLO11 models was automatically stopped after 100
pochs if the model validation metrics did not improve. We
sed the best saved models for evaluation. All training and
raining evaluation were performed using a Google Cloud
irtual instance with four NVIDIA T4 graphical processing
nits. 
o  
odel performance 
fter training was complete, AP, mAP, AR, and mAR, and
P0.5 , mAP0.5 , AR0.5 , and mAR0.5 for salmon and pollock
ere calculated for each of the multi-class model’s respec-

ive evaluation datasets to evaluate overall performance. The
eneral toolbox for identifying object detection errors (TIDE;
oyla et al. 2020 ) was used to categorize and estimate the
ercentage of errors that were false positives or negatives and
hich were caused by classification or localization errors and
ackground or missed detections. False positive detections
ere further evaluated by applying the models to the video

rames where no fish were present using five confidence score
hresholds (0.5 to 0.9). 

The AP0.5 and AR0.5 for each class of the best performing
ulti-class model was calculated across all confidence score

hresholds to determine the threshold that produced equal
P0.5 and AR0.5 (hereafter referred to as the optimal confi-
ence score threshold) prioritizing these two metrics equally,
nd compared with the performance variability of annotators.
he model with the best trade-off between lower false positive
etections and higher AP0.5 and AR0.5 was selected as the best
erforming multi-class detection model. 
Performance variability was evaluated for all multi-class
odels using the optimal confidence thresholds for AP0.5 and
R0.5 for the best performing model. The AP0.5 and AR0.5 for

almon and pollock were calculated for each of the trawl and
amera conditions present in each model’s respective evalua-
ion datasets. 

almon-only model 
 single-class salmon-only model (hereafter referred to as the

ingle-class model) was also fine-tuned and the model’s overall
erformance, optimal confidence threshold, and performance
ariability was evaluated in the same manner as the multi-class
odels. The single-class model was trained and evaluated with
nly salmon annotations and all pollock annotations omitted
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using the data subset from the five-fold cross validation that 
produced the best overall model performance. The model was 
trained for 250 epochs with the same hyperparameters as the 
selected best performing multi-class model. 

Model validation on fishing tows 

Fishing tows 
Video from three tows from those collected in 2019 (tows 16,
18, and 20) were selected to further evaluate the detection per- 
formance for salmon. The three tows had varying catch rates 
for pollock and salmon and were not used for model training 
or evaluation. The same NMS hyperparameters used to eval- 
uate the models were used to run the models for predictions 
on full length fishing tows ( Table 1 ). 

The salmon previously indicated in the Yochum et al.
(2021) analysis were reviewed for these three tows and the 
start and end frames of each individual salmon presence was 
recorded to create a dataset that included frame information 

for all salmon. Using an open-source video review software,
DJV, a reviewer skipped to the video times where salmon 

were indicated and recorded the first and last frame that each 

salmon was identified in the video. Salmon were considered 

present when the reviewer could distinguish the fish as salmon,
including when fish were partially occluded. Salmon were con- 
sidered not present when they could no longer be recognised 

because they had become too small or had faded into the 
background of the video. To ensure the accuracy of individ- 
ual salmon presence frame data, another person reviewed and 

recorded the start and end frames of all previously indicated 

salmon for a random 10% of the videos from all three tows as 
well as all salmon indicated in the original review sheet that 
our initial reviewer could not find. Any discrepancies beyond 

minor differences in start and end frames were discussed and 

resolved. 

Fish detections 
The best performing multi-class model and the single-class 
model were applied to the videos from the three full length 

fishing tows. All detections with a confidence score equal to 

or greater than the optimal confidence score threshold for each 

class were retained to evaluate detection performance for pol- 
lock and salmon. The average number of salmon and pollock 

detections per second was calculated by applying a 30-frame 
moving average to the total detections per frame of each. The 
total number of salmon present for each frame of the tow 

videos was determined from the individual salmon presence 
frame data. These totals were plotted with the average detec- 
tions per second for salmon and the total salmon detections 
per frame to understand the performance of the models and 

any possible issues with false positive and negative detections.
The detections for a small subset of frames from these tows 
were also plotted to visualize and understand both types of 
detection errors. 

Salmon presence 
We established a detection-based salmon presence algorithm 

to predict general salmon presence and to assess the feasibility 
of using detections to indicate general salmon presence in sup- 
port of semi-automated video review. Multiple variables were 
included to allow us to require consecutive frames of salmon 

detections or multiple salmon detections per frame to possibly 
improve salmon presence prediction when salmon false posi- 
ives or missed detections occurred. The code and models used
or salmon presence prediction are publicity available on our 
ithub repository. 
The salmon presence algorithm, S , was calculated using 

hree thresholds: the minimum confidence of salmon de- 
ections C , the minimum number of salmon detections per
rame M , and the minimum number of consecutive frames
ontaining salmon detections N . Salmon presence, S , was
redicted as true for a given set of consecutive frames of
ength N if for every frame there are at least M salmon
etections with a confidence score greater than or equal 
o C. 

Salmon presence, S , for a given set of consecutive frames Fk ,
here k is the set or prediction occurrence number, is deter-
ined by the following equations: 

{
di j ∈ Di | di j ≥ C

}
(3) 

{
fi,i +1 ,i +2 ,... ,i + n ∈ Fk || Di | ≥ M, ∀ fi 

}
(4) 

S ( Fk ) =
{

1 , |Fk | ≥ N 

0 , |Fk | < N 

(5) 

Where Di is the set of all salmon detections dij with a con-
dence score greater than or equal to C for frame fi where i
nd j are respectively the frame number and detection number
Eq. 3 ). A consecutive set of frames was included in the set F
f all frames have salmon detections greater than or equal to
 (Eq. 4 ). For each set in F , S is true if the size of the set is

reater than or equal to N (Eq. 5 ). 
To determine the best range of values for thresholds C , M ,

nd N , we performed parameter optimisation using the LIPO
lobal optimization algorithm (Malherbe and Vayatis 2017 ).
 random selection of 20% of the videos from each tow were
sed to optimise parameters. Two metrics were used to choose
he preferred values for these parameters: proportion of in- 
luded frames and presence recall. 

The proportion of included frames, I , was defined as the
raction of total frames where salmon presence was predicted 

Eq. 6 ) and is indicative of the proportion of video that a per-
on would need to review. This metric gives an approximation
f the potential time savings from a semi-automated review
rocess. 

I =
∑ k 

S( Fk ) =1 | Fk | 
total frames 

(6) 

Presence recall, P , was defined as the proportion of gen-
ral salmon presence occurrences that had at least one salmon
resence prediction. We chose this definition of successful 
resence detection because the prediction algorithm would 

orrectly indicate the video location of salmon for a person
onducting a semi-automated review process. If T is a set con-
aining the general ground-truths of salmon occurrences (a 
onsecutive set of frames where salmon is present) where m
ndicates the set or occurrence, then we calculated presence 
ecall by counting the number of sets in T that intersect with
ny set in F (i.e. they share at least one frame) and the inter-
ecting F set has S(F) equal to one. We then divided the total
orrectly predicted salmon presence occurrences by the total 
rue number of occurrences (Eq. 7 ). 

P =
∑ m 

Tm ∩ F ∧ S( F ) =1 1 ∣∣T ∣∣ (7) 
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Two other metrics, frame recall and precision, were used
ith I and P to evaluate the optimal salmon presence algo-

ithm. Frame recall was calculated as the number of frames
here salmon presence was correctly predicted (true posi-

ives), divided by the total number of frames where salmon
resence was true (Eq. 2 ). Frame precision was calculated as
he number of frames where salmon presence was correctly
redicted, divided by the total number of frames where salmon
resence was predicted (Eq. 1 ). 
The optimal salmon presence algorithm determined by the

arameter optimisation with a confidence threshold that was
elected empirically to maximize presence recall while still
liminating a high proportion of frames for review was run
n all three full-length tow videos and evaluated using these
our metrics: I, P, frame recall, and frame precision. General
almon presence, rather than individual salmon presence, was
etermined from the individual salmon presence frame data
nd used to calculate these metrics. 

esults 

nnotation dataset 

he annotated dataset included 16 989 frames with 219
almon and 3091 pollock tracks that consisted of 11 575
almon and 73 394 pollock bounding box annotations, re-
pectively ( Table 2 , Fig. 4 ). There were 1059 frames where
almon and pollock were not present and the remaining
5 930 frames included salmon and pollock annotations for
ine of 12 background conditions. Approximately 85.1%,
.9%, and 0.7% of the dataset was respectively classified
s low, medium, and high fish densities. High densities of
rill were present in 14.2% of the frames, and 5.8% had
he camera occluded or had low illumination. Three other
ossible background conditions were not present in the ran-
omly selected data: the presence of high densities of krill dur-
ng high fish density and the presence of both high densities
f krill and camera occlusions during medium and high fish
ensities. 
For the seven tows that annotation video clips were selected

rom, there were a total of 690 chum salmon ( O. keta ) and
 Chinook salmon ( O. tshawytscha ) caught and tow speeds
anged from 1.6 to 2.2 m/s. The annotated data included 16%
f the salmon present in the four tows used from 2019 and
4% of the salmon present in the three tows from 2020. A
igher percentage of salmon in the 2020 tows were used for
nnotation because there were fewer salmon present in these
ows. 

nnotator performance baseline 

he maximum variability between salmon and pollock anno-
ations completed by different annotators was approximately
0% and pollock accounted for most of this. The average
AP0.5 was 0.7 ± 0.08, indicating that between annotators an

verage of 70% of the annotated salmon and pollock matched
ith 50% or greater overlap. The average mAP0.5 ranged from
.57 to 0.79, while the average mAR0.5 was 0.81 ± 0.07 and
anged from 0.74 to 0.87. Higher AP and AR showed there
as greater consistency among salmon annotations (approx-

mately 85–90% agreement) compared to the pollock anno-
ations (approximately 60%–77% agreement) ( Table 3 ). An-
otator variability was greatest for pollock on the bottom
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Fish density
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0

Figure 4: The percentage of annotations from each tow. (A) The percentage of total frames, bounding boxes and tracks of salmon and pollock. (B) The 
percentage of frames for four levels of fish density (none, low, med, high) and different background conditions present in the annotations are shown. 
The table below the bar plot shows the fish density in the top row and the total number of frames for each condition or combination of conditions in the 
bottom row. If krill (Krill) or either camera occlusions or low light (Occluded or low light) were present, it is indicated by an “X” respectively in the second 
and third rows of the table. 2019 tows are shown in shades of blue and 2020 tows in shades of red with white or black dots. 
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and sides of the net and entering and leaving the camera 
scene. 

Model training and evaluation 

Cross-fold validation dataset 
Separating annotations by video clips led to variability in the 
number of frames, annotations, and tracks included in each 

of the five data subsets used for cross-fold model evaluation 

and training. Each data subset included a range of 16% to 

24% of the annotated frames (2670 to 4133 frames), 17% 

to 26% of the salmon annotations (1998 to 3001 frames),
19% to 21% of the salmon tracks (42 to 45 tracks), 17% to 

23% of the pollock annotations (12 471 to 16 524 frames),
and 16% to 28% of the pollock tracks (497 to 871 tracks) 
( Table 4 ). 

Model performance 
YOLO11 outperformed EfficientDet for all metrics we evalu- 
ated ( Table 5 ). YOLO11 achieved a mAP0.5 of 0.72 ± 0.083 

and mAR0.5 of 0.90 ± 0.014 for salmon and pollock de- 
tection; whereas, EfficientDet achieved only a mAP0.5 of 
0.54 ± 0.068 and mAR0.5 of 0.83 ± 0.059. The mean 

AP0.5 and AR0.5 for models was higher for pollock for both 

YOLO11 and EfficientDet than for salmon. The multi-class 
model that was trained and evaluated using data subset 5 

had much lower salmon AP0.5 than the other four models for 
both YOLO11 (approximately 30% lower) and EfficientDet 
(approximately 11% lower). For YOLO11, the AP0.5 of the 
other four multi-class models and the single-class model were 
similar and ranged from 0.7 to 0.8. The single-class model’s 
salmon AR0.5 was higher (0.983) than all the YOLO11 multi- 
class model’s AR0.5 (max 0.88). 

For the multi-class models’, false positives were associated 

with an average of 18% of the YOLO11 and 29% of the Ef- 
ficientDet D2 performance error, while respectively approxi- 
mately 11% and 12% of these were due to other objects in 
he scene or the background being detected as either salmon
r pollock. False negatives contributed to an average of 7.5%
f the model error for the YOLO11 multi-class models com-
ared to 10% for the EfficientDet models. These false nega-
ives accounted for an average of 0.8% of annotations missed
y YOLO11 and 5% missed by EfficientDet. For the single-
lass model, false positives accounted for a similar percentage 
f error as the multi-class model’s averages (approximately 
9% total and 11% background). However, the single-class 
odel had a lower percentage of false negatives (1.3%) and
issed detections (0.3%). 
Low confidence score thresholds led to low numbers of 

alse positive salmon and pollock detections for the multi-class 
odels and no false positive salmon detections for the single-

lass model when neither salmon or pollock were present.
he number of false positive fish detections for the 1059

rames with no fish was variable for the five multi-class mod-
ls, ranging from 2 to 66 detections (approximately 0.1–6.2% 

f frames) when a confidence score threshold of 0.5 was used
o 0 detections for a threshold of 0.9 ( Figure 5 A). The 66
alse positive fish detections for the 0.5 confidence thresh- 
ld was an anomaly produced by high pollock false positives
or one of the trained models. The model with the second
ighest false positive detections for the 0.5 confidence thresh- 
ld had only 18 false detections (approximately 1.7% of 
rames). 

When using the optimal confidence score thresholds, the 
est performing multi-class model precision and recall for pol- 

ock detection was higher than the performance variability 
easured for our annotators. However, the detection perfor- 
ance for salmon precision and recall for the multi-class and

ingle-class models was lower than our annotator variability 
 Fig. 5 B). The salmon precision for the multi-class and single-
lass models were similar across confidence score thresholds,
ut for confidence scores greater than 5e-3 the multi-class 
odel had higher salmon recall than the single-class model.
he confidence score that optimized AP0.5 and AR0.5 for pol- 
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 Table 4. The number of frames, annotations, and clips in the five data 
subsets used for five-fold cross validation model training and evaluation. 

Data subset: 1 2 3 4 5 

Frames 2994 3547 2670 4133 3654 
Annotations 16 015 18 628 16 221 14 594 19 525 
Salmon annotations 2019 2434 1998 2123 3001 
Pollock annotations 13 996 16 194 14 223 12 471 16 524 
Salmon tracks 42 44 43 45 45 
Pollock tracks 510 606 607 497 871 
No fish clips 6 5 6 6 6 
Fish low clips 32 32 33 32 32 
Fish med clips 4 4 5 4 4 
Fish high clips 0 0 1 0 1 
Occlusion or low light clips 7 6 6 6 6 
High density krill clips 4 5 5 4 4 
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ock and salmon for the multi-class model was approximately
.1 and 0.23 respectively, and it was 0.06 for the single-class
almon-only model ( Fig. 5 B). 

The evaluation of detection performance across the nine
ifferent trawl and video conditions showed there was greater
ariability among model performance for salmon, that detec-
ion performance was generally lower during high fish density,
nd that salmon detection was better than pollock detection
hen high densities of fish or krill were present ( Fig. 6 ). When
sing the optimal confidence score thresholds, the median
P0.5 ranged from 0.29 to 0.87 and the median AR0.5 ranged

rom 0.4 to 0.88 for salmon and pollock across conditions.
he median AP0.5 and AR0.5 were highest during medium fish
ensity with high abundnace of krill present and were low-
st during high fish density conditions and when a high abun-
ance of krill and camera occlusions or low light were present
t the same time. Salmon median AP0.5 and AR0.5 were lower
han pollock excpet when high densities of fish or krill were
resent. 

odel validation on fishing tows 

ishing tows 
he tows selected for model validation (2019 tows 16, 18,
nd 20) included 52 videos and had a range of salmon oc-
urrences and estimated pollock catch. The duration of video
ollected for each tow was 2.5, 2.1, and 2.1 hours, the salmon
ccurrence rates were 63.2, 51.4, and 160.5 individuals per
our, and the estimated pollock catch rates were 6, 1.4, and
7.8 metric tonnes per hour respectively for tows 16, 18, and
0 (Yochum et al. 2021 ). The total number of salmon pres-
nce occurrences for all tows was 664 (tow 16 = 168, tow
8 = 134, and tow 20 = 362) and the number of recorded
eneral salmon occurrences was 655 (tow 16 = 165, tow
8 = 131, and tow 20 = 359) due to instances when the same
almon came in and out of frame several times. 

The rate of agreement between the two people who de-
ermined the individual salmon presence was 84.5% for the
andom 10% sample of tow videos. During the review of all
almon that had been previously recorded for these tows, we
dentified instances where previously recorded salmon could
ot be identified in videos (n = 6), instances where salmon
ere present in the videos but not indicated in the review sheet

n = 7), as well as two salmon that were missed by the first
eviewer and caught during the second review. These discrep-
ncies were corrected for in our individual salmon presence
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rame data and accounted for less than 3% of all presence
ata used during our analysis. 

ish detections 
he multi-class model detected more of the known salmon 

han the single-class model with the optimal confidence score 
hreshold. However, salmon false positives were higher for the 
ulti-class model than the single-class model ( Fig. 7 ). Salmon

alse positives occurred more often when Pacific herring ( Clu-
ea pallasi , hereafter referred to as “herring”) and krill were
resent, both of which could be seen in detections for tow 20
 Fig. 7 , 8 ). Detection performance for tows 16 and 18 was
imilar to tow 20, but since no krill or herring were present in
hese tows there were less salmon false positives evident. Over-
ll, the detection results were the best for tow 18, which had
he lowest pollock catch rates leading to lower fish densities
hroughout the tow. 

Examples of detections from each model suggested that fish 

etection performed well with these videos, but error occurred 

ue to fish missed in the background and sides and bottom of
he net ( Fig. 8 D); fish in the far background being detected
 Fig. 8 A); herring detected as salmon and pollock ( Fig. 8 B, C,
nd F); and jellyfish detected as pollock. Salmon in the back of
he net or on the sides and bottom of the net were occasionally
ot detected by both models. 

almon presence 
n average our optimized salmon presence algorithm, using 
etections from the multi-class model, included 15% of all
rames and had a mean presence recall of 99.3%, frame pre-
ision of 22.7%, and frame recall of 79.3% ( Table 6 ). For the
5% proportion of included frames, 22% contained salmon.
f all frames where salmon were present, 77% were predicted

orrectly by the algorithm. Of the 664 true salmon presence
ccurrences across all tows, only five were missed by the algo-
ithm (99.3% presence recall). Three missed presences were 
n tow 20 and two were in tow 18. The performance of the
almon presence algorithm varied across tows based on the 
onditions present ( Fig. 9 ). 

When the single-class model was used, fewer frames were 
ncluded on average and the frame precision was higher than
hen the multi-class model was used, but the mean presence

ecall and frame recall were lower ( Table 6 ). The lower recall
as due to the algorithm missing 25 salmon presences when

he single-class model was used. 
The optimal values chosen for the parameters of the salmon

resence algorithm were: C = 0.2, M = 1 , and N = 2 . The
IPO optimisation results indicated that requiring detections 
cross consecutive frames ( N > 1, Eq. 5 ) helped reduce pres-
nce false positives, but multiple salmon detections per frame 
 M > 1, Eq. 4 ) did not improve the performance of pres-
nce prediction. Increasing the minimum confidence thresh- 
ld of detections reduced presence recall and the proportion 

f included frames (i.e. increased the proportion of eliminated 

rames) ( Fig. 10 ). 

iscussion 

n this study, we evaluated salmon and pollock detection 

ccuracy in trawl videos for two object detection models: 
fficientDet D2 and YOLO11n. Using a dataset of almost 
7 000 frames with 11 572 salmon and 73 394 pollock anno-
ations and five-fold cross validation the models were trained 
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Figure 5: YOLO11n model performance for different confidence score thresholds when no fish are present and fish are present. (A) Boxplots of the 
multi-class models’ number of false positive (FP) salmon (light blue) and pollock (grey) detections for 1 059 frames with no fish present for five 
confidence thresholds ranging from 0.5 to 0.9. The red line in the middle of each box, the bottom and top of the boxes, the whiskers, and the open 
circles show the values of the median, the first and third quartiles, the minimum and maximum, and outliers, respectively. The star and diamond (dark 
blue) to the right of each box respectively show the values of the best multi-class model and the single-class salmon-only model. (B) COCO’s Average 
Precision (AP0.5 , solid line) and Average Recall (AR0.5 , dashed line) for an intersection over union threshold of 0.5 for the best multi-class model’s salmon 
(light blue) and pollock (grey) detections and the single-class model’s salmon (dark blue) detections are shown for all confidence score thresholds. The 
shaded blue and grey areas show our annotators’ performance range for salmon and pollock respectively. The lower bound of the shaded areas is the 
mean AP0.5 , and the upper bound is the mean AR0.5 achieved between annotators. The stars show the confidence score that optimises the models 
AP0.5 and AR0.5 . 
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s multi-class models to detect salmon and pollock. Each
odel’s overall performance was evaluated with COCO and
IDE metrics, and the performance variability across ten dif-

erent trawl and video conditions was examined. A single-class
almon-only model was also trained and evaluated with the
ame dataset used for the best performing multi-class model.
he best performing multi-class and the single-class models
ere compared with the detection variability we measured for
ur annotators and further tested on full fishing tows to as-
ess performance on a greater amount of data and to evaluate
he feasibility of streamlining video review using a detection-
ased salmon presence prediction algorithm that we devel-
ped. 
Our analysis showed that YOLO11n performed better than

fficientDet D2 at detecting salmon and pollock in trawl
ideos and within the range of the variability we measured be-
ween annotators when considering the performance of both
lasses together. At optimal confidence score thresholds, the
ulti-class performed better at salmon detection than the

ingle-class model. The detection performance across mod-
ls was more variable for salmon than pollock across dif-
erent trawl and video conditions and it was generally low-
st during high fish densities. For full fishing tows, the multi-
lass model detected more salmon and salmon presences than
he single-class model. The YOLO11n multi-class detection
odel’s ability to predict salmon presence would support a

emi-automated video review process that would be more ef-
cient than a fully manual review. 

nnotation dataset 

e used multiple tows from two different years to create a
iverse annotation dataset, but it had weaknesses such as few
xamples of Chinook salmon, young and smaller salmon, high
 s  
sh density conditions, and no examples of herring or differ-
nt trawls. The video used to create the annotation dataset
as collected from a single vessel during the summer pol-

ock fishing season when the salmon bycatch is predomi-
ately chum salmon ( O. keta ) as opposed to the winter sea-
on when Chinook salmon ( O. tshawytscha ) are more preva-
ent including younger, smaller adults (Witherell et al. 2002 ,
ucker et al. 2011 , Stram and Ianelli 2015 ). More exam-
les of Chinook salmon are needed to know how well the
odels can detect this species. The full fishing tow detec-

ion results showed that herring were incorrectly detected as
almon and this may have been reduced if video clips with
erring had been included in the annotation dataset. A lack
f data from multiple vessels could also cause the devel-
ped models to not generalise well to video collected from
ther vessels, and we were unable to evaluate this with our
ataset. 
The annotation dataset was also imbalanced and included

ewer salmon annotations than pollock annotations which
ikely contributed to the lower detection performance for
almon than pollock. The dataset also had fewer frames with
edium and high fish density compared with low fish density

nd low numbers of frames with medium or high fish densi-
ies with camera occlusions, low light, or high krill abundance
resent. This led to the exclusion of different conditiond in
ome of the cross-validation data subsets. For example, our
ataset only included two video clips with high fish density
nd, therefore, only two of the five cross-validation subsets
ad examples of high fish density. This also led to some of the
ifferent trawl and video conditions having low frame sample
izes, models with evaluation datasets that did not include any
xamples of some conditions, and high model performance
ariability across these conditions. Furthermore, the data sub-
et that was used for training and evaluating the best perform-
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ing multi-class model was missing examples of low fish den- 
sity with high abundance of krill and camera occlusions or 
low light present, medium fish density with high abundance 
of krill present, and high fish density. This may have led to 

the model’s higher performance metrics, and it is possible that 
one of the other models may have greater generalisation and 

perform better on the full fishing tows. 
The addition of data that contains herring and other con- 

ditions that had low representation in our dataset (e.g. pres- 
ence of krill or high fish densities) would likely increase model 
performance since more data often leads to increased model 
performance (Goodfellow et al. 2016 ). Balancing the number 
of annotated video clips across cross-validation data subset 
would improve the cross-validation evaluation and is achiev- 
able. However, a fully balanced dataset for these videos is 
likely not achievable due to higher occurrences of low fish 

density compared to medium and high fish density and pol- 
lock compared to salmon. 

Annotator performance baseline 

The majority of annotator variability was due to differences 
among pollock annotations. Given the high number of pol- 
lock present in these videos this was not surprising. The cam- 
era setup and illumination used to collect the videos produced 

a mostly aft-facing, tunnel view that led to fish fading into the 
ackground and provided limited visibility of the bottom of 
he net. Both of these situations created challenges for and
iscrepancies among annotation. Fish, especially smaller fish 

ike some of the pollock, were hard to distinguish on the bot-
om and deciding when to end a fish track as it faded into the
ackground was more subjective. When high densities of krill
ere present it was also hard to distinguish fish and lead to
iscrepancies in the annotations. Often the salmon present in 

ur videos were larger than the pollock and, therefore, were
asier to distinguish on the bottom and when high densities of
rill were present. 

odel training and evaluation 

OLO11 performed better on this dataset than EfficientDet,
nd both models did better at predicting pollock than salmon.
urthermore, YOLO11’s fish detection for these trawl videos 
as comparable to the variability measured for people’s abil- 

ty to detect fish. However, the performance for pollock de-
ection was higher and the performance for salmon detection 

as lower than the variability measured for our annotators.
he largest contributor to the false positive error for YOLO11
as the detection of other objects as salmon and pollock (i.e.
ackground detections), and fewer errors were due to salmon 

eing classified as pollock or vice versa. The opposite was true
or EfficientDet. The lower performance for salmon was likely
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Table 6. The multi-class (salmon and pollock) and single-class (salmon only) model salmon presence algorithm results. The 2019 fishing tow (Tow), 
presence recall (P), frame precision and recall, proportion of included frames (I), percentage of frames with salmon present from reviewer records (% of 
frames presence known), the number of salmon occurrences that were correctly predicted (Correct predicted occurrences), and the number of salmon 
occurrences that were missed (Missed occurrences) are shown. 

Model Tow P Frame precision 
Frame 
recall I 

% of frames 
presence known 

Correct predicted 
occurrences 

Missed oc- 
currences 

Salmon & pollock 16 100% 17% 87% 15% 3% 168 0 
18 99% 27% 78% 8% 3% 132 2 
20 99% 24% 73% 22% 7% 359 3 

Salmon only 16 98% 25% 77% 9% 3% 165 3 
18 97% 54% 66% 3% 3% 129 5 
20 93% 40% 57% 10% 7% 345 17 
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due to fewer annotated salmon available for training com- 
pared to pollock. 

One of the five multi-class models for both YOLO11 and 

EfficientDet had relatively low average precision compared 

to the other models for each detector, which was due to 

the dataset used for evaluating these models. The evalua- 
tion data subset used had one relatively long clip (1171 

frames, 33% of the data subset) of a single salmon near 
the end of a tow and another short clip with 10 salmon 

during high fish density. Errors in salmon detection for the 
high number of salmon annotations in these clips likely 
ed to the lower performance metrics for salmon for these
odels. 
The evaluation of model performance across different con- 

dence score thresholds highlighted important aspects of de- 
ection models: they can be adjusted to prioritize either fewer
issed or fewer incorrect detections. In this study, we used the

onfidence threshold where precision and recall are equal to 

rioritize both equally. With this confidence score threshold,
he best performing YOLO11 multi-class model performed 

etter than the single-class model. However, the single-class 
OLO11 model achieved higher overall AR0.5 than the multi- 



16 Wilson et al.

c  

t
 

e  

p  

w  

fi  

i  

w  

i  

fi  

d  

h  

m  

p  

fi  

b  

m  

p  

f
 

v  

v  

w  

e  

p  

A  

i  

fi  

a
 

h  

e  

p  

p  

i  

s  

p  

m  

b  

m  

t  

r

M

T  

c  

t  

t  

h  

m  

i  

d  

s  

h  

m  

c  

c  

f  

c  

t  

c  

l  

i  

d  

s
 

p  

t  

r  

h  

u  

s  

b  

f  

s  

j  

p  

w  

m  

e  

s  

f  

v  

t  

p  

f  

m
 

o  

t  

d  

o  

I  

e  

p  

d  

i  

t  

a  

c  

d  

(  

t  

o  

m  

c  

A  

c  

2  

a  

d  

d
 

i  

c  

v  

t  

c  

f  

n  

i  

n  

r  

Y  

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/82/9/fsaf168/8262706 by U
niversity of W

ashington user on 25 Septem
ber 2025
lass models when no confidence score threshold was used due
o higher recall values for confidence scores below 5e-3. 

The models’ detection performance across the nine differ-
nt trawl and video conditions revealed expected and unex-
ected findings. Lower performance during high fish density
as expected due to this condition causing partially occluded
sh that can make detection and classification more challeng-
ng. The greater variability of model performance for salmon
as also expected due to fewer salmon annotations included

n our dataset. The higher detection performance for medium
sh density with high abundance of krill and the higher me-
ian AP0.5 and AR0.5 for salmon compared to pollock during
igh fish and krill density were unexpected. We believe this
ay be due to fewer fish being detectable and annotated by
eople during these conditions. During clear video conditions,
sh barely visible in our videos were annotated on the sides,
ottom, and farther back in the net and often missed by the
odel. When high densities of krill were present in the videos,
eople did not detect fish in these locations often leading to
ewer annotations for the models to possibly miss. 

Our YOLO11 model detected pollock and salmon in these
ideos from an Alaska commercial pollock trawl, a high-
olume pelagic trawl fishery, in a comparable fashion to what
as observed for object detection performance in the dem-

rsal Nephrops fishery (Sokolova et al. 2021 ). The detection
rediction accuracy was approximately 10% lower than what
llken et al. (2021) achieved for fish detection for Deep Vision

magery collected in a trawl survey where the abundance of
sh was much lower, images with krill present were excluded,
nd the camera capture environment was more controlled. 

Overall, the precision achieved by YOLO11 was relatively
igh despite the challenges present in these videos, the differ-
nces between our imagery and the COCO dataset used to
re-train the models ( Suppl. Figure 1 ), and our lack of hyper-
arameter optimization. The high densities and overlap of fish
n some of our video and the non-canonical camera views pre-
ented additional object detection challenges that may not be
resent in much of the COCO dataset. We chose not to opti-
ise hyperparameters to balance our objectives to establish a
aseline understanding of how well the available pre-trained
odels performed on our dataset. A better way to compare

he performance between these models is to conduct hyperpa-
ameter optimization for each. 

odel validation on fishing tows 

he multi-class YOLO11 model did better than the single-
lass model at detecting the salmon present in the full fish
ows, but salmon false positives were common, especially in
he multi-class model, due to misclassification of pollock and
erring. The increase in salmon detection for the multi-class
odel compared to the single-class model was slightly evident

n the detections across full tows and more evident when the
etections were used to infer general salmon presence. The
almon false positives due to misclassification of pollock and
erring highlight the challenges of classifying fish species with
orphological similarities when the imagery is not ideal. In-

luding video clips with herring in the annotated dataset and
ollecting better video imagery would help these models dif-
erentiate between these fishes. Furthermore, since the multi-
lass model differentiated between salmon and pollock well,
raining a model to detect all three could be promising and
ould benefit the pollock fishery since herring also has catch
imits in the Alaska pollock fishery (NPFMC 2024 ). However,
ncreasing the number of classes can decrease other aspects of
etection performance (Dean et al. 2013 ), and these trade-offs
hould be evaluated. 

Despite object detection error, predicting general salmon
resence using our YOLO11 model and our presence predic-
ion algorithm showed the feasibility for a semi-automated
eview to reduce the time for analysis for videos collected in
igh-volume trawl fisheries. By performing detection filtering
sing thresholds for the detection confidence score and con-
ecutive frames with detections, which were both shown to
e important, we were able to exclude over 80% of video
rames from potential review while missing fewer than 1% of
almon. Furthermore, our code and models processed tows in
ust hours, with an approximate 90 fps processing speed, com-
ared to an experienced video reviewer needing a few days to
eeks to review a tow. The actual time savings from using our
odel and salmon presence prediction algorithm cannot be

stimated because our metrics are imperfect indicators of the
emi-automated review process. The proportion of included
rames being 15% does not necessarily mean that video re-
iew would be 85% faster, but we believe it will be less time
han reviewing 85% more frames. It may be possible to im-
rove the presence prediction algorithm by considering other
eatures for filtering, such as bounding box size, and imple-
enting the algorithm with better performing detectors. 
In addition to hyperparameter optimization and expanding

ur annotated dataset, other options that may improve de-
ection model performance include increasing the annotated
ata using data augmentation and evaluating different meth-
ds for species classification or new object detection models.
n this study, only a few data augmentation techniques were
valuated with a small data subset for EfficientDet and no
erformance increases were achieved. Further evaluation of
ata augmentation options with a larger dataset could lead to
mproved performance or better performance when applying
hese models to new video. For example, using an automated
pproach to find optimal data augmentation options has in-
reased object detection performance across different datasets,
ataset sizes, backbone architectures and detection algorithms
Zoph et al. 2020 ). Another option to possibly increase detec-
ion performance is to use more information from tracking
r multiple detectors. If reliable object tracking was imple-
ented, weighing the classifications of all detections in a track

ould result in better fish classification (Dawkins et al., 2024 ).
lso, weighing the predictions of multiple or different types of
lassifiers may improve fish classification accuracy (Xie et al.
019 ). Lastly, new object detection models are released often
nd models that achieve higher performance on benchmark
atasets may be able to achieve higher performance on our
ataset. 
The best option for increasing object detection performance

s improving the quality of video collected in the trawl. The
amera setup and capture environment used to collect these
ideos were the most significant factors that limited the de-
ection performance. The illumination and placement of the
amera made it challenging to see and distinguish identifying
eatures of salmon or pollock on the bottom and sides of the
et or in the background. It was challenging for people famil-
ar with identifying salmon to review these videos and recog-
ise every salmon. We found some discrepancies in the salmon
ecords when the salmon presence frame data was created, and
ochum et al. (2021) acknowledged that the limited visibility

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf168#supplementary-data
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and the presence of high densities of pollock or krill likely led 

to salmon being missed and underestimated by people. Fur- 
thermore, correctly classifying some fish as salmon or pollock 

was difficult and took input from multiple people to arrive at 
a consensus. Some modifications to the camera or net setup 

that might help with these challenges include the use of ad- 
ditional lighting, which may have impacts on fish behaviour; 
use of additional cameras to view fish at the bottom of the 
net better and provide more opportunity to see all fish when 

density is high; positioning cameras to have a perpendicular 
view of fish to allow morphological differences to be more ap- 
parent and reduce issues with background fish; adding solid,
high-contrast material around the net or a full compartment 
(e.g. DeepVision; https://www.deepvision.no/) to enhance illu- 
mination and object contrast; or modifying the net to control 
the flow and location of fish past the camera. 

Application in fishery 

Our object detection model and salmon presence algorithm 

could be used to reduce the time to generate data from video 

footage collected in the Alaska commercial pollock fishery to 

evaluate salmon BRDs and accelerate the pace of salmon by- 
catch reduction research for this fishery. The salmon presence 
prediction results showed the potential for a semi-automated 

video review. However, to gain the greatest reduction in video 

review time, more work is needed to build user-friendly tools 
that allow for models like ours to be used effectively by video 

reviewers. 
In addition to semi-automating and increasing the efficiency 

of video review to support bycatch reduction research, object 
detection could be used in the Alaska pollock fishery to inform 

vessels of salmon bycatch (e.g. an alarm) and target catch in 

real-time or to support active bycatch reduction devices that 
are currently being researched. However, for the fishery to ever 
adopt these tools, further steps are needed to address issues 
with our annotated dataset, conduct further model evalua- 
tion, and develop a model with better salmon detection per- 
formance. 

In the Alaska pollock fishery, relatively low numbers of Chi- 
nook salmon bycatch can shut down the fishery, so the detec- 
tion of all Chinook salmon is important. False positive salmon 

detections would be preferable over missed salmon, but ob- 
taining a relatively low number of false positives would be 
ideal. A different camera implementation will likely be needed 

to achieve this high level of performance, but simply using our 
model with a higher confidence score threshold would reduce 
the salmon false positives while increasing the likelihood of 
missing salmon. A model that meets or exceeds the perfor- 
mance of people could be acceptable to use in the fishery and 

further model development may make this possible. 
When using object detection models on fishing vessels,

model performance should be evaluated initially and then 

periodically as a quality control measure due to differences 
between vessel cameras, nets, and tows, which cause natu- 
ral real-world variations that impact performance (Hendrycks 
et al. 2021 ). Model performance may vary for different 
vessels, trawls, catch compositions, and tow speeds. A single 
detection model might generalise well for different vessels if 
the model was trained with imagery captured from many ves- 
sels and fishing environments, which may be achievable over 
time with data sharing and continual model training. How- 
ever, it may be necessary to train custom models for each ves- 
el using imagery captured from only that vessel to achieve
he highest performance. If that is the case, each vessel’s data
ould be used to fine-tune and optimise performance of a sin-
le model like we did in this study. 

For most commercial fishery research and applications, the 
otal number of fish or biomass of a species is more useful than
elative information about fish detections. To achieve this,
hese detections could be used to track and count individuals,
r possibly converted to a biomass. For accurate biomass esti-
ates, a measure of model performance, fish length frequency 
istribution, and possibly the rate that fish flow through the
et would need to be accurately estimated. The camera angle
sed in this study and the high densities of fish that can be
resent would make tracking and counting challenging, but 
t may be possible with suitable approaches. For biomass es-
imates, fish length frequency distributions can be estimated 

rom the catch (Gulland and Rosenberg 1992 ), or stereo-
ameras could be used to measure this directly from the videos
Williams et al. 2010 , Rosen et al. 2013 ). If fish flow is needed,
he detections or tracks of fish could provide estimates of this,
r water flow measurements could suffice for passive swim-
ing fish. 
Deep learning is a powerful tool for automating imagery

nalysis and our results suggest that this technology has 
remendous potential, but should be used thoughtfully and 

ith a thorough understanding of its strengths, limitations,
nd the scope of data used for training and evaluating. Un-
erstanding the limitations of detection models is critical for 
perational use for bycatch reduction in commercial fisheries.
lso, it is essential to consider all aspects of the task to be
utomated before deciding to use deep learning methods as
he solution. Developing reliable automated methods can re- 
uire great initial effort in data collection and curation, anno-
ation, and model development (Goodfellow et al. 2016 ) and
hould be weighed against potential time savings compared 

o traditional methods. As shown here and in other studies,
eep learning methods may ultimately still require people in 

he processing or analysis loop to verify detections, tracks, or
ounts of objects (Wilchek et al. 2023 ). However, we have
hown that YOLO11n has the potential to reduce the time
eeded to review videos collected in the trawls of the Alaska
ollock fishery and provide salmon awareness for salmon by- 
atch reduction methods in this fishery. Given the performance 
e observed for the pollock fishery, we believe other high-

olume, pelagic trawl fisheries could use deep-learning object 
etection methods to assist with video review or monitoring 
o support bycatch reduction efforts. 

onclusions 

he open-source pre-trained object detection models Effi- 
ientDet D2 and YOLO11n were trained and evaluated us- 
ng a subset of annotated video collected in the trawl of an
laska pollock fishing vessel to determine if deep-learning 
ould be used to support salmon bycatch reduction in this fish-
ry and possibly other high-volume, pelagic trawl fisheries. Us- 
ng an annotated dataset of almost 17 000 frames with 11 572
almon and 73 394 pollock annotations to train and evalu-
te models, we found that YOLO11n performed better than 

fficientDet D2 at detection of salmon and pollock in trawl
ideos and within the range of the variability we measured be-
ween annotators. For the evaluation dataset, the YOLO11n 

ulti-class models detected on average 90% of the annotated 

https://www.deepvision.no/
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almon and pollock, and 72% of the models’ predictions were
orrect when using an IoU threshold of 0.5. The YOLO11n
ulti-class model for salmon and pollock also performed bet-

er than a single-class salmon model. 
When using the YOLO11n multi-class detection model

ith a salmon prediction algorithm we developed to anal-
se full fishing tows, salmon presence was predicted for 15%
f the total video frames and only 5 of 664 salmon pres-
nces were missed. This level of performance would support
 semi-automated video review process that would be more
fficient than a fully manual review and assist in expediting
ideo analysis to evaluate salmon bycatch reduction devices in
he Alaska pollock fishery. The YOLO11n model also shows
romise for being able to predict salmon for bycatch reduction
ethods that require real-time monitoring, but the models will
eed further development and evaluation to achieve the per-
ormance level required for these applications. Improvements
o the trawl camera setup such as a high contrast background,
 perpendicular flow view, and additional lighting could in-
rease object detection performance most by providing higher
uality of imagery data. 
This work showed that deep learning object detection meth-

ds are accessible and robust. With just a few changes to
odel hyperparameters and the use of a relatively small anno-

ation training dataset compared to the COCO dataset used
or pre-training the models, we were able to detect fish at
omparable rates to the variability measured between people
onducting this task. The methods that we used to evaluate
ur model performance provided valuable insight into per-
ormance objectives, trade-offs, and improvements needed to
se these models to support bycatch reduction efforts in high-
olume trawl fisheries. We believe this information and our
nnotations, video imagery, and models that we provided can
upport the continued development of automated video and
mage processing methods for bycatch mitigation innovation
n the Alaska pollock fishery. 
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